研究生: |
黃崇軒 Huang, Chung-Hsuan |
---|---|
論文名稱: |
相位-質心光鉗技術及其樣本三維旋轉模式數位全像斷層造影之應用 Phase-centroid trapping technique and applications for three-dimensional sample rotation in digital holographic tomography |
指導教授: |
鄭超仁
Cheng, Chau-Jern |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 數位全像顯微術 、全像光鉗 、數位全像斷層造影 |
英文關鍵詞: | Digital holographic microscopy, Holographic optical tweezers, Digital holographic tomography |
DOI URL: | http://doi.org/10.6345/NTNU201900621 |
論文種類: | 學術論文 |
相關次數: | 點閱:93 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出了一種能達到穩定的樣品旋轉之相位質心光鉗技術並可以應用於三維旋轉模式數位全像斷層造影。透過數位全像波前感測得到樣品相位-質心的定量分析並透過折射率與質量之間的轉換關係可以使其近似為樣品的質心。為了完成樣品的三維旋轉,我們透過使用數位全像術的樣品分析數據來設計光鉗聚焦點的位置並產生一系列全角度旋轉的電腦全像片,透過電腦全像片可以在指定的三維位置上產生多個光鉗聚焦點,在本論文中,我們將產生一個光鉗聚焦點在樣品相位-質心的位置上以輔助旋轉,而其他光鉗聚焦點將設計在樣品長軸的末兩端點並透過操控兩端點的光鉗聚焦點以達到樣品三維旋轉。實驗結果表明,使用相位-質心光鉗技術的樣品旋轉在旋轉穩定性方面更好,並且在斷層重建過程中測量和驗證三維折射率而無需任何波前修正處理。
We have proposed a novel phase-centroid trapping technique which has stable sample rotation. It can be used for three-dimensional tomographic imaging. The digital holographic wavefront sensing gives an activated quantitative analysis for phase-centroid point of the sample. This information can be approximated to the mass-centroid of the sample according to the positive relationship between refractive index and mass. To accomplish rotation of the sample, the analyzed data of the sample by digital holographic microscopy can be used to design the position of focal points and to generate a series of computer-generated holograms. Using these CGHs multi-focal points are generated. One of the focused point is generated to trap phase-centroid of the sample and others will trap and rotate the sample around the phase-centroid of the sample. The experimental results have shown that the sample rotation with phase-centroid trapping is better in rotation stability. The three-dimensional refractive index is measured and verified without any image processing during the tomographic reconstruction procedure.
[1] U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[2] U. Schnars and W. P. O. Jüptner, Digital Holography, Springer US, New York, 5-69 (2005).
[3] E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
[4] E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999).
[5] V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microscopy 205, 2, 165-176 (2002).
[6] W. Gorski and W. Osten, “Tomographic imaging of photonic crystal fibers,” Opt. Lett. 32, 14, 1977-1979 (2007)
[7] Y. C. Lin and C. J. Cheng, “Sectional imaging of spatially refractive index distribution using coaxial rotation digital holographic microtomography,” J. Opt. 16, 065401 (2014).
[8] F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, "Cell refractive index tomography by digital holographic microscopy," Opt. Lett. 31, 178-180 (2006).
[9] B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 4, 460-463 (2017).
[10] F. Hörner, M. Woerdemann, S.Müller, B. Maier, C. Denz, “Full 3D translational and rotational optical control of multiple rod‐shaped bacteria,” J. Biophoton.3, No. 7, 468–475 (2010).
[11] V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82, 829 (2003).
[12] Y. C. Lin, H. C. Chen, H. Y. Tu, C. Y. Liu, and C J. Cheng, "Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy," Opt. Lett. 42, 1321-1324 (2017).
[13] J. Kostencka, T. Kozacki, A. Kuś, and M. Kujawińska, "Accurate approach to capillary-supported optical diffraction tomography," Opt. Express 23, 7908-7923 (2015).
[14] K. Kim and Y. Park, “Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3D refractive index maps,” Nat. Commun. 8, 15340 (2017).
[15] E. Wolf, “Three-dimensional structure determination of semitransparent objects from holographic data,” Opt. Commun. 1 153–156 (1969).
[16] B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 4, 460-463 (2017).
[17] S. Vertu1, J. J. Delaunay, I. Yamada1, O. Haeberlé, “Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space,” Cent. Eur. J. Phys. 7, 22-31 (2009).
[18] A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. , Vol. 24, Issue 5, pp. 156-159 (1970).
[19] A. Ashkin, “Force of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophy. J. 61, 569-582 (1992).
[20] J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2004).
[21] C. Maurer, S. Khan, S. Fass, S. Bernet, and M. Ritsch-Marte, “Depth of field multiplexing in microscopy,” Opt. Express, 18, 3023-3034,(2010).
[22] J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, "Interactive approach to optical tweezers control," Appl. Opt. 45, 897-903 (2006).
[23] K. G. Phillips, S. L. Jacques, and O. J. T. McCarty, “Measurement of Single Cell Refractive Index, Dry Mass, Volume, and Density Using a Transillumination Microscope,” Phys. Rev. Lett. 109, 118105 (2012).