簡易檢索 / 詳目顯示

研究生: 謝明佑
Ming-Yu Hsieh
論文名稱: 適應性動態估測即時影像穩定系統
Real-time Image Stabilization System Using Adaptive Motion Estimation
指導教授: 蘇崇彥
Su, Chung-Yen
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
中文關鍵詞: 影像穩定
論文種類: 學術論文
相關次數: 點閱:239下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中提出一套適應性動態偵測即時影像穩定系統,目的在縮短系統之執行時間與提供良好的影像穩定品質。在動態偵測方面,我們使用小方塊搜尋方式,並提出用Sobel edge detection方式來增加Global Motion Vector (GMV)之可靠性而且可以減少在計算上所花的時間。而GMV估測則是提出Alpha-trimed mean filter方法,此一方法可以去除一些較異常的移動向量值,提升GMV估測的準確性。在GMV修正方面,提出小波轉換的方法,並比較不同的小波轉換層數與濾波器,提出一個較好的結果來使用。在即時性的考量之下,有關一些資料的搬移方面,記憶體的配置與搬移會影響執行時間的多寡,為了減少時間的花費,本研究將RGB三個平面的資料儲存在同一個記憶體而不分開儲存以便能縮減執行時間,達到即時性的要求。在一般系統常用的影像尺寸352 x 288(QVGA)環境下,系統仍能提供平均每秒約20-30以上的畫面,以提供給系統使用者相當流暢的畫面。最後本系統於WINDOWS平台下以Borland C++ Builder來實現。

    In this paper, we propose a new image stabilization system by using adaptive motion estimation. Our aims are to decrease the execution time of a stabilized system and obtain a more stable video sequence. The stabilization system contains two parts: motion estimation and motion correction. In the motion estimation, we use a small diamond search and Sobel edge detection to increase the reliability of the prediction of block motion. And we use an alpha-trimmed mean filter to yield a global motion vector (GMV) for each frame. The proposed filter can remove unusual motion vectors and promote the accuracy of GMV estimation. In motion correction, we make use of wavelet transform. After comparing the usages of different decomposition layers and different wavelet functions, we choose two-layer decomposition and the 9/7 filter function as our experimental standard because of its better performance. For real-time applications, the allocation and the movement of storage memory generally influence the execution time of a system. In order to reduce such time consuming, we store the RGB data in a continuous block of memory instead of storing them separately in three blocks of memory. For the image size of 352 x 288 (CIF format), the proposed system can provide about 20-30 frames per second on average and result in a stabilized video sequence for users. Finally, this system is programmed with Borland C++ Builder.

    第一章 緒論 9 1.1研究背景 9 1.2研究動機 9 1.3 全文架構 10 第二章 相關文獻探討 11 第三章 影像穩定系統架構 16 3.1 影像穩定系統之架構 16 3.2 動態偵測 18 3.2.1眾數 19 3.2.2 Alpha-trimed mean filter 20 3.3 GMV修正 21 3.3.1小波轉換 21 3.3.2 Average filter 24 3.3.3 Kalman filter 24 3.4 穩定畫面輸出 25 3.5 適應性之動態偵測 26 第四章 研究成果 30 4.1 小波轉換 30 4.2 Kalman filter 44 4.3影像穩定之程式開發及測試 50 第五章 結論及未來展望 59 5.1 結論 59 5.2 未來展望 59

    [1] M. Hansen, P. Anandan, K. Dana, and P. Burt, “Real-time scene stabilization and mosaic construction,” Proceedings of the Second IEEE Workshop on Applications of Computer Vision, pp. 54 –62, 1994.
    [2] Y. Egusa, H. Akahori, A. Morimura, and N. Wakami, “An application of fuzzy set theory for an electronic video camera image stabilizer,” IEEE Transactions on Fuzzy Systems, pp. 351 –356, 1995.
    [3] C. Guestrin, F. Cozman, and M. G. Simoes, “Industrial applications of image mosaicing and stabilization,” Proceedings of the Second International Conference on Knowledge-Based Intelligent Electronic Systems, vol. 2, pp.174 –183, 1998.
    [4] S. J. Ko, S. H. Lee and K. H. Lee, “Digital image stabilizing algorithms based on bit-plane matching,” IEEE Transactions on Consumer Electronics, vol. 44, pp. 617-622, 1998.
    [5] J. K. Paik, Y. C. Park, and D. W. Kim, “An adaptive motion decision system for digital image stabilizer based on edge pattern matching,” IEEE Transactions on Consumer Electronics, vol. 38, No. 3 , pp. 607-616, 1992.
    [6] S. Erturk and T. J. Dennis, “Image sequence stabilization based on DFT filtering,” Proceedings of IEE on Image Vision and Signal Processing, vol. 127, pp. 95-105, 2000.
    [7] S. Erturk, “Image sequence stabilization: motion vector integration (MVI) versus frame position smoothing,” Proceedings of IEEE Eurasip Symposium on Image and Signal Processing and Analysis, pp. 604-271, 2001.
    [8] F. Vella, and A. Castorina, “Digital image stabilization by adaptive block motion vectors filtering,” IEEE Transactions on Consumer Electronics, vol. 48, No. 3, 2002.
    [9] S. Erturk, “Real-time digital image stabilization using kalman filters,” Real-Time Imaging, vol. 8, pp. 317-328, 2002.
    [10]S. Erturk, “Digital image stabilization with sub-image phase correlation based global motion estimation,” IEEE Transactions on Consumer Electronics, vol. 49, No. 4, 2003
    [11]M. K. Güllü and S. Erturk “Membership function adaptive fuzzy filter for image sequence stabilization,” IEEE Transactions on Consumer Electronics, vol. 50, pp. 1-7, 2004.
    [12]張家豪,以光流法設計平面運動攝影機之數位影像穩定技術,國立交通大學電機與控制工程研究所碩士論文,2001.
    [13]葉有民,數位影像穩定系統之新演算法與架構,國立交通大學電子工程研究所碩士論文,2000
    [14]Y. M. Liang, H. R. Tyan, M. Liao and S. W. Chen,” Stabilizing image dequences taken by the camcorder mounted on a moving vehicle,” Proceedings of IEEE on Intelligent Transportation Systems, vol. 1, pp. 90-95, 2003.
    [15]J. Y. Chang, W. F. Hu, M. H. Cheng and B. S. Chang, “Digital image translational and rotational motion stabilization using optical flow technique,” IEEE Transactions on Consumer Electronics, vol. 48, pp. 108-115, 2002.
    [16]C. K. Liang, Y. C. Peng, H. A. Chang, C. C. Su and H. Chen, “The effect of digital image stabilization on coding performance,” Proceedings of 2004 International Symposium on Intelligent Multimedia Video and Speech, pp. 402-405, 2004.

    QR CODE