研究生: |
周承穎 Chou, Cheng-Ying |
---|---|
論文名稱: |
利用超快雷射製程製備石墨烯結構元件應用氣體偵測之研究 Investigation on Graphene Structure Devices by Ultrafast Laser Processing Technology for Gas Detection |
指導教授: |
張天立
Chang, Tien-Li |
口試委員: |
何正榮
Ho, Jeng-Rong 莊賀喬 Chuang, Ho-Chiao 鄭中緯 Cheng, Chung-Wei 張天立 Chang, Tien-Li 陳順同 Chen, Shun-Tong 楊啟榮 Yang, Chii-Rong |
口試日期: | 2022/01/27 |
學位類別: |
博士 Doctor |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 超快雷射 、皮秒雷射 、石墨烯薄膜 、電極結構 、奈米線 、微溝槽 、氣體偵測 |
英文關鍵詞: | Ultrafast laser, Picosecond laser, Graphene thin films, Electrode structures, Nanowires, Microgroove, Gas detection |
DOI URL: | http://doi.org/10.6345/NTNU202200344 |
論文種類: | 學術論文 |
相關次數: | 點閱:193 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
參考文獻
[1] “Ultrafast lasers market- growth, trends, COVID-19 impact, and forecasts (2022-2027),” Mordor Intelligence (2021)
[2] “Micromachining market size, share & trends analysis report by type (traditional, non-traditional, hybrid), by process (additive, subtractive), by axis, by end use, by region, and segment forecasts, 2020-2027,” Grand View Research (2020)
[3] “Gas sensor market size, share & trends analysis report6 by product6 (Oxygen/Lambda sensor, Carbon Dioxide sensor), by type (wired, wireless), by technology, by end used, by region, and segment forecasts,” Grand View Research, (Jan. 2021)
[4] D. Kohl, “Function and application of gas sensors,” Journal of Physics D: Applied Physics, Vol. 34, pp. 125-149 (2001)
[5] S. Mourya, A. Kumar, J. Jaiswal, G. Malik, B. Kumar, R. Chandra, “Development of Pd-Pt functionalized high performance H2 gas sensor based on silicon carbide coated porous silicon for extreme environment applications,” Sensors and Actuators B: Chemical, Vol. 283, pp. 373-383 (2019)
[6] I. J. Choi, B. J. Kim, S. H. Lee, B. J. Jeong, T. Nasir, Y. S. Cho, N. Kim, J. H. Lee, J. Y. Choi, “Fabrication of a room-temperature NO2 gas sensor using morphology controlled CVD-grown tellurium nanostructures,” Sensors and Actuators B: Chemical, Vol. 333, 128891 (2021)
[7] K. C. Hsu, T. H. Fang, Y. J. Hsiao, C. A. Chan, “Highly response CO2 gas sensor based on Au-La2O3 doped SnO2 nanofibers,” Materials Letters, Vol. 261, 127144 (2020)
[8] W. Tian, X. Liu, W. Yu, “Research progress of gas sensor based on graphene and its derivatives: A review,” Applied Sciences, Vol. 8, 1118 (2018)
[9] N. Anzar, R. Hasan, M. Tyagi, N. Yadav, J. Narang, “Carbon nanotube-A review on synthesis, properties and plethora of applications in the field of biomedical science,” Sensors International, Vol. 1, 100003 (2020)
[10] H. Liu, L. Zhang, K. H. H. Li, O. K. Tan, “Microhotplated for metal oxide semiconductor gas sensor applications-towards the CMOS-MEMS monolithic approach,” Micromachines, Vol. 9, 557 (2018)
[11] S. Mahajan, S. Jagtap, “Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review,” Applied Materials Today, Vol. 18, 100483 (2020)
[12] G. Jung, Y. Hong, S. Hong, D. Jang, Y. Jeong, W. Shin, J. Park, D. Kim, C. B. Jeong, D. U. Kim, K. S. Chang, J. H. Lee, “A low-power embedded poly-Si microheater for gas sensor platform based on a FET transducer and its application of NO2 sensing,” Sensors and Actuators B: Chemical, Vol. 334, 129642 (2021)
[13] Y. Nagaruina, Y. J. Hsiao, “Au doping ZnO nanosheets sensing properties of ethanol gas prepared on MEMS device,” Coatings, Vol. 10, 945 (2020)
[14] J. Meng, Z. Li, “Schottky-contacted nanowire sensors,” Advanced Materials, Vol. 32, 2000130 (2020)
[15] K. C. Phillips, H. H. Gandhi, E. Mazur, S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Advances in Optics and Photonics, Vol. 7, pp.684-712 (2015)
[16] L. Lucas, J. Zhang, “Femtosecond laser micromachining: A back-to-basics primer,” Industrial Laser Solutions for Manufacturing, (July, 2012)
[17] “雷射產業與技術發展趨勢,”工研院雷射中心 (2020)
[18] K. Ko, J. Mendeloff, W. Gray, “The role of inspection sequence in compliance with the US Occupational Safety and Health Administration’s (OSHA) standards: Interpretations and implications,” Regulation & Governance, Vol. 4, pp. 48-70 (2010)
[19] “An emerging market for CO2 gas sensors to assess COVID-19 transmission risk,” Smart Energy, (Nov. 2020)
[20] “MEMS & Sensors challenges & opportunities for the next decade,” Claire Troadec of Yole Development, (April, 2016)
[21] 馮晉嘉, “微小化生物感測器技術趨勢分析極發展政策建議,”工研院 IEK 生醫與生活組 (2002)
[22] H. Nazemi, A. Joseph, J. Park, A. Emadi, “Advanced micro- and nano- gas sensor technology: A review,” Sensors, Vol. 19, 1285 (2019)
[23] S. E. Moon, N. J. Choi, H. K. Lee, J. Lee, W. S. Yang, “Semiconductor-type MEMS gas sensor for real-time environmental monitoring applications,” ETRI Journal, Vol. 35, pp. 617-24 (2013)
[24] C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor,” Sensors and Actuators B: Chemical, Vol. 128, pp. 320-325 (2007)
[25] M. Wu, J. Shin, Y. Hong, D. Jang, X. Jin, H. I. Kwon, J. H. Lee, “An FET-type gas sensor with a sodium ion conducting solid electrolyte for CO2 detection,” Sensors and Actuators B: Chemical, Vol. 259, pp. 1058-1065 (2018)
[26] J. Lee, N. J. Choi, H. K. Lee, S. Y. Lim, J. Y. Kwon, S. M. Lee, S. E. Moon, J. J. Jong, D. J. Yoo, “Low power consumption solid electrochemical-type micro CO2 gas sensor,” Sensors and Actuators B: Chemical, Vol. 248, pp. 957-960 (2017)
[27] R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, “Zinc oxide nanostructures for NO2 gas-sensor applications: A review,” Nano-Micro Letter, Vol. 7, pp. 97-120 (2015)
[28] M. Rieu, M. Camara, G. Tournier, J. P. Viricelle, C. Pijolat, N. F. Rooij, D. Briand, “Fully inkjet printed SnO2 gas sensor on plastic substrate,” Sensors and Actuators B: Chemical, Vol. 236, pp. 1091-1097 (2016)
[29] E. Singh, M. Meyyappan, H.S. Nalwa, “Flexible graphene-based wearable gas and chemical sensors,” Applied Materials & Interfaces, Vol. 9, pp. 34544-34586 (2017)
[30] O. Hayden, R. Agarwal, W. Lu, “Semiconductor nanowire devices,” Nanotoday, Vol. 3, pp. 12-22 (2008)
[31] X. Zhao, P. Zhang, Y. Chen, Z. Su, G. Wei, “Recent advances in the fabrication and structure-specific applications of graphene-based inorganic hybrid membranes,” Nanoscale, Vol. 7, pp. 5080-5093 (2015)
[32] Z. Lockman, S. T. Rahmat, N. Bashirom, M. Rozana, “Surface oxidation of metal for metal oxide nanowires formation,” 1-Dimensional Metal Oxide Nanostructures, pp.30 (2018)
[33] G. Yang, S. J. Park, “Conventional and microwave hydrothermal synthesis and application of functional materials: A review,” Materials, Vol. 12, 1177 (2019)
[34] Y. Li, J. Zhu, H. Cheng, G. Li, H. Cho, M. Jiang, Q. Gao, X. Zhang, “Developments of advanced electrospinning techniques: A critical review,” Advanced Materials Technologies, Vol. 6, 2100410 (2021)
[35] H. D. Zhang, X. Yan, Z. H. Zhang, G. F. Yu, W. P. Han, J. C. Zhang, Y. Z. Long, “Electrospun PEDOT:PSS/PVP nanofibers for CO gas sensing with quartz crystal microbalance technique,” International Journal of Polymer Science, Vol. 2016 (2016)
[36] K. H. Smith, E. T. Montes, M. Poch, A. Mata, “Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials,” The Royal Society of Chemistry, Vol. 40, pp. 4563-4577 (2011)
[37] R. V. Kumar, D. J. Fray, “Development of solid-state hydrogen sensors,” Sensors and Actuators, Vol. 15, pp. 185-191 (1988)
[38] J. Kuwano, T. Eguchi, Y. Saito, “Ambient temperature oxygen sensors based on fluoride solid electrolyte: the roles of the constituents in the sensing electrode mixtures containing phthalocyanines,” Talanta, Vol. 44, pp. 705-712 (1997)
[39] J. Kuwato, M. Asano, K. Shigehara, M. Kato, “Ambient temperature solid-state oxygen sensor using fast ion conductors PbSnF4 and Ag6I4WO4,” Solid State Ionics, Vol. 41, pp. 472-475 (1997)
[40] T. Lang, H-D Wiemhofer, W. Gopel, “Carbonate based CO2 sensors with high performance,” Sensor and Actuators: B, Vol. 34, pp. 383-387 (1996)
[41] X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, H. Ning, “A survey on gas sensing technology,” Sensors, Vol. 12, pp. 9635-9665 (2012)
[42] Z. L. Wang, “Splendid one-dimensional nanostructures of Zinc Oxide: A new nanomaterial family for nanotechnology,” ACS Nano, Vol. 2, pp. 1987-1992 (2008)
[43] P. G. Choi, N. Izu, N. Shirahata, Y. MNasuda, “Improvement of sensing properties for SnO2 gas sensor by tuning of exposed crtystal face,” Sensors and Actuators B: Chemical, Vol. 296, 126655 (2019)
[44] Z. Li, Z. Yao, A. A. Haidry, T. Plecenik, L. Xie, L. C. Sun, Q. Fatima, “Resistive-type hydrogen gas sensor based on TiO2: A review,” International Journal of Hydrogen Energy, Vol. 43, pp. 21114-21132 (2018)
[45] V. S. Bhati, M. Hojamberdiev, M. Kumar, “Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review,” Vol. 6, pp. 46-62 (2020)
[46] S. Pongodi, P. S. Kumar, D. Mangalaraj, N. Ponpandian, P. Meena, Y. Masuda, C. Lee, “Electrodeosition of WO3 nanostructured thin films for electrochromic and H2S gas sensor application,” Journal of Alloys and Compounds, Vol. 719, pp. 71-81 (2017)
[47] D. Li, Y. Tang, D. Ao, X. Xiang, S. Wang, X. Zu, “Ultra-highly sensitive and selective H2S gas sensor based on CuO with sub-ppb detection limit,” International Journal of Hydrogen Energy, Vol. 44, pp. 3985-3992 (2019)
[48] S. Zhang, M. Yang, K. Liang, A. Turak, B. Zhang, D. Meng, D. Wang, F. Qu, W. Cheng, M. Yang, “An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes,” Sensors and Actuators B: Chemical, Vol. 290, pp. 59-67 (2019)
[49] P. Rai, Y.-S. Kim, H.-M. Song, M.-K. Song, Y.-T. Yu, “The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases”, Sensors and Actuators B, Vol. 165, pp. 133-142 (2012)
[50] R. Sankar Ganesh, E. Durgadevi, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, “Low temperature ammonia gas sensor based on Mn-doped ZnO nanoparticle decorated microspheres”, Journal of Alloys Compounds, Vol. 721, pp. 182-190 (2017)
[51] L. Zhu, W. Zeng, “Room-temperature gas sensing of ZnO-based gas sensor: A review,” Sensors and Actuators A: Physical, Vol. 267, pp. 242-261 (2017)
[52] F. Rasch, V. Postica, F. Schütt, Y. K. Mishra, A. S. Nia, M. R. Lohe, X. Feng, R. Adelung, O. Lupan, “Highly selective and ultra-low power consumption metal oxide based hydrogen gas sensor employing grahene oxide as molecular sieve,” Sensors and Actuators B: Chemical, Vol. 320, 128363 (2020)
[53] V. Haridas, A. Sukhananazerin, J. M. Sneha, B. Pullithadathil, B. Narayanaan, “α-Fe2O3 loaded less-defective graphene sheets as chemiresistive gas sensor for selective sensing of NH3,” Applied Surface Science, Vol. 517, 146158 (2020)
[54] W. Zhang, S. Cao, Z. Wu, M. Zhang, Y. Cao, J. Guo, F. Zhong, H. Duan, D. Jia, “High-performance gas sensor of polyaniline/carbon nanotube comosites promoted by interface engineering,” Sensors, Vol. 20, 149 (2020)
[55] H. Maeum, K. J. Keon, L. Junyeop, A. H. Kyung, Y. J. Pil, K. S. Won, J. Daewoong, “Room-temperature hydrogen-gas sensor based on carbon nanotube yarn,” Journal of Nanoscience and Nanotechnology, Vol. 20, pp. 4011-4014 (2020)
[56] H. S. Hong, N. H. Ha, D. D. Thinh, N. H. Nam, N. T. Huong, N. T. Hue, T. V. Hoang, “ Enhanced sensitivity of self-powered NO2 gas sensor to sub-ppb level using triboelectrtic effect based on surface-modified PDMS and 3D-graphene/CNT network,” Nano Energy, Vol. 87, 106165 (2021)
[57] W. Lubs, B. Wellegehausen, D. Zuber, U. Morgner, “Maiman revisited: tuneable single mode CW ruby ring laser,” Journal of Physics Communications, Vol. 5, 085012 (2021)
[58] S. Hypsh, G. Shannon, “Femtosecond laser processing of meta.l and plastics in the medical device industry,” Industrial laser solutions (2014)
[59] M. S. Kim, J. Son, H. Lee, H. Hwang, C. H. Choi, G. Kim, “Highly porous 3D nanofibrous scaffolds processed with an electrospinning/laser process,” Current Applied Physics, Vol. 14, pp. 1-7 (2014)
[60] X. Yun, Z. Xiong, L. Tu, L. Bai, X. Wang, “Hierarchical porous graphene film: An ideal material for laser-carving fabircation of flexible micro-supercapacitors with high specific capacitance,” Carbon, Vol. 125, pp. 308-317 (2017)
[61] K. Lee, H. Ki, “Fabrication, optimization of transparent conductive films using laser annealing and picosecond laser patterning,” Applied Surface Science, Vol. 420, pp. 886-895 (2017)
[62] X. Wang, J. Zhang, X. Mei, B. Xu, J. Miao, “Laser fabrication of fully printed graphene oxide microsensor,” Optics and Lasers in Engineering, Vol. 140, (2021)
[63] M. S. Kim, J. Son, H. Lee, H. Hwang, C. H. Choi, G. Kim, “Highly porous 3D nanofibrous scaffolds processed with an electrospinning/laser process,” Current Applied Physics, Vol. 14, pp. 1-7 (2014).
[64] Y. Yu, P. C. Joshi, J. Wu, A. Hu, “Laser-induced carbon-based smart flexible sensor array for multiflavors detection,” ACS Appl. Mater. Interfaces, Vol. 10, pp. 34005-34012 (2018)
[65] W. Liu, Y. Huang, Y. Peng, M. Walczak, D. Wang, Q. Chen, Z. Liu, L. Li, “Stable wearable strain sensors on textiles by direct laser writing of graphene,” ACS Appl. Nano Mater., Vol 3, pp. 283-293 (2020)
[66] X. Shen, P. C. Hsiao, B. Phua, A. Stokes, V. R. Goncales, A. Lennon, “Plated metal adhesion to picosecond laser-ablated silicon solar cells: Influence of surface chemistry and wettability,” Solar Energy Materials & Solar Cells, Vol. 205 (2020)
[67] R. A. Rajan, C. V. Ngo, J. Yang, Y. Liu, K. S. Rao, C. Guo, “Femtosecond and picosecond laser fabrication for long-term superhydrophilic metal surfaces,” Optics and Laser Technology, Vol. 143 (2021)
[68] T. Zhou, T. Zhang, “Recent progress of nanostructured sensing materials from 0D to 3D: Overview of structure-property-application relationship for gas sensors,” Vol. 5, 2100515 (2021)
[69] S. S. Brenner, “The growth of whiskers by the reduction of metal salts,” Acta Metallurgica, Vol. 4, pp. 62-74 (1956)
[70] R. Fabiha, A. Casey, G. Triplett, S. Bandyopadhyay, “Low temperature growth of germanium oxide nanowires by template based self assembly and their Raman characterization,” Oxide Electronics, Ch. 5 (2021)
[71] P. M. Kakade, A. R. Kachere, N. T. Mandlik, S. R. Rondiya, S. R. Jadkar, S. V. Bhosale, “Graphene oxide assisted synthesis of magnesium oxide nanorods,” ES Materials & Manufacturing, Vol. 12, pp. 63-71 (2021)
[72] K. Ye, B. Wang, A. Nie, K. Zhai, F. Wen, C. Mu, Z. Zhao, J. Xiang, Y. Tian, Z. Liu, “Broadband photodetector of high quality Sb2S3 nanowire grown by chemical vapor deposition,” Journal of Materials Science & Technology, Vol. 75, pp. 14-20 (2021)
[73] B. Cho, J. Yoon, M. G. Hahm, D. H. Kim, A. R. Kim, Y. H. Kahng, S. W. Park, Y. J. Lee, S. G. Park, J. D. Kwon, C. S. Kim, M. Song. Y. Jeong, K. S. Nam, H. C. Ko, “Graphene-based gas sensor: metal decoration effect and application to a flexible device,” Journal of Materials Chemistry C, Vol. 2, pp. 5280-5285 (2014)
[74] M. S. Park, K. H. Kim, M.J. Kim, Y. S. Lee, “NH3 gas sensing properties of a gas sensor based on fluorinatedgraphene oxide,” Colloids and Surfaces A: Physicochemical and Engineering Aspects , Vol. 490, pp. 104-109 (2016)
[75] S. M. J. Khadem, Y. Abdi, S. Darbari, F. Ostovari, “Investigating the effect of gas absorption on the electromechanical and electrochemical behavior of graphene/ZnO structure, suitable for highly selective and sensitive gas sensors,” Current Applied Physics, Vol. 14, pp. 1498-1503 (2014)
[76] M. Assar, R. Karimzadeh, “Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation”, Journal of Colloid and Interface Science, Vol. 483, pp. 275-280 (2016).
[77] S. Vallejos, I. Grácia, O. Chmela, E. Figueras, J. Hubálek, C. Cané, “Chemoresistive micromachined gas sensors based on functionalized metal oxide nanowires: Performance and reliability”, Sensors and Actuators B: Chemical, Vol. 235, pp. 525-534 (2016)
[78] R. Kumara, D. K. Avasthi, A. Kaur, “Fabrication of chemiresistive gas sensors based on multistep reduced graphene oxide for low parts per million monitoring of sulfur dioxide at room temperature”, Sensors and Actuators B: Chemical, Vol. 242, pp. 461-468 (2017).
[79] R. You, D. D. Han, F. Liu, Y. L. Zhang, G. Lu, “Fabrication of flexible room-temperature NO2 sensors by direct laser writing of In2O3 and graphene oxide composites,” Sensors and Actuators B: Chemical, Vol. 277, pp. 114-120 (2018)
[80] J. Cai, C. Lv, E. Aoyagi, S. Ogawa, A. Watanabe, “Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics,” Applied Materials and Interfaces, Vol. 10, pp. 23987-23996 (2018)
[81] C. C. Cesar, M. C. Gnambodoe, Y. L. Wang, “Growth mechanism studies of ZnO nanowire arrays via hydrothermal method,” Applied Physics A, Vol. 115, pp. 953-960 (2014)
[82] M. Jiao, N. V. Chien, N. V. Duy, N. D. Hoa, N. V. Hieu, K. Hjort, H. Nguyen, “On-chip hydrothermal growth of ZnO nanorods at low temperature for highly selective NO2 gas sensor,” Materials Letters, Vol. 169, pp. 231-235 (2016)
[83] Z. Rafiee, H. Roshan, M. H. Sheikhi, “Low concentration ethanol sensor based on graphene/ZnO nanowires”, Ceramics International, Vol. 47, pp. 5311-5317 (2021)
[84] T. Zhang, X. Zhang, B. Ding, J. Shen, Y. Hu and H. Gu, “Homo-epitaxial secondary growth of ZnO nanowire arrays for a UV-free warm white light-emitting diode application,” Applied Optics, Vol. 59, pp. 2498-2504 (2020)
[85] Y. Xiao, H. Wang, F. Awai, N. Shibayama, T. Kubo, H. Segawa, “Eco-friendly AgBiS2 nanocrystal/ZnO nanowire heterojuction solar cells with enhanced carrier collection efficiency,” ACS Applied Material & Interfaces, Vol. 13, pp. 3969-3978 (2021)
[86] L. R. Raj, S. Valanarasu, K. Hariprasad, J. S. ponraj, N. Chidhambaram, V. Ganesh, H. E. Ali, Y. Khairy, “Enhancement of optoelectronic parameters of Nd-dopted ZnO nanowires for photodetector applications,” Optical Materials, Vol. 109, 110396 (2020)
[87] L. Cai, H. Li, H. Zhang, W. Fan, J. Wang, Y. Wang, X. Wang, Y. Tang, Y. Song, “Enhanced performance of the tangerines-like CuO-based gas sensor using ZnO nanowire arrays,” Materials Science in Semiconductor Processing, Vol. 118, 105196 (2020)
[88] X. Zhang, W. Wang, D. Zhang, Q. Mi, S. Yu, “Self-powered ethanol gas sensor based on the piezoelectric Ag/ZnO nanowire arrays at room temperature,” Journal of Material Science: Material Electron, Vol. 32, pp. 7739-7750 (2021)
[89] T. J. Hsueh, C. H. Peng, W. S. Chen, “A transparent ZnO nanowire MEMS gas sensor prepared by an ITO micro-heater,” Sensors and Actuators B: Chemical, Vol. 304, 127319 (2020)
[90] Y. H. Liu, S. J. Chang, L. T. Lai, Y. P. Tu, S. J. Young, “Aluminum-doped zinc oxide nanorods and methyl alcohol gas sensor application,” Microsystem Technologies (2020)
[91] Z. Yu, J. Gao, L. Xu, T. Liu, Y. Liu, X. Wang, H. Suo, C. Zhao, “Fabrication of lettuce-like ZnO gas sensor with enhanced H2S gas sensitivity,” Crystals, Vol. 10, 145 (2020)
[92] J. Xue, T. Wu, Y. Dai, Y. Xia, “Electrospinning and elctrospun nanofibers: Methods, Materials, and Applications,” Chemical Reviews, Vol. 119, pp. 5298-5415 (2019)
[93] H. D. Zhang, X. Yan, Z. H. Zhang, G. F. Yu, W. P. Han, J. C. Zhang, Y. Z. Long, “Electrospun PEDOT:PSS/PVP nanofibers for CO gas sensing with quartz crystal microbalance technique,” International Journal of Polymer Science, Vol. 2016 (2016)
[94] M. C. Han, H. W. He, B. Zhang, X. X. Wang, J. Zhang, M. H. You, S. Y. Yan, Y. Z. Long, “Fabrication of Ag nanowire/polymer composite nanocables via direct electrospinning,” Materials Research Express, Vol. 4 (2017)
[95] C. L. Hsu, L. F. Chang, T. J. Hsueh, “Light-activated humidity and gas sensing by ZnO nanowires grown on LED at room temperature,” Sensors and Actuators B: Chemical, Vol. 249, pp. 265-277 (2017)
[96] S. L. Marasso, A. Tommasi, D. Perrone, M. Cocuszza, R. Mosca, M. Villani, A. Zappettini, D. Calestani, “A new method to integrate ZnO nanotetrapods on MEMS micro-hotplates for large scale gas sensor production,” Nanotechnology, Vol. 27 (2016)
[97] Y. Zhang, J. Zhang, Y. Jiang, Z. Duan, B. Liu, Q. Zhao, S. Wang, Z. Yuan, H. Tai, “Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection ability at room temperature,” Sensors and Actuators B: Chemical, Vol. 319, 128293 (2020)
[98] P. S. Shewale and K. S. Yun, “Synthesis, characterization of Cu-doped ZnO/RGO nanocomposites for room-temperature H2S gas sensor,” Journal of Alloys and Compounds, Vol. 837, 155527 (2020)
[99] Y. Tu, C. Kyle, H. Luo, D. W. Zhang, A. Das, J. Briscoe, S. Dunn, M. M. Titirici, S. Krause, “Ammonia gas sensor response of a vertical zinc oxide nanorod-gold junction diode at room temperature,” Sensors, Vol. 5, pp. 3568-3575 (2020)
[100] N. Pienutsa, P. Roongruangsree, V. Seedokbuab, K. Yannawibut, C. Phatoomvijitwong, S. Srinives, “SnO2-grahene composite gas sensor for a room temperature detection for ethanol,” Nanotechnology, Vol. 32, 115502 (2021)
[101] M. Wang, Y. Zhu, D. Meng, K. Wang, C. Wang, “A novel room temperature ethanol gas sensor based on 3D hierarchical flower-like TiO2 microstructures,” Materials Letters, Vol. 277, 128372 (2020)
[102] M. Assar, R. Karimzadeh,“Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation”, Journal of Colloid and Interface Science, Vol. 483, p.p. 275-280, (2016)
[103] S. Vallejos, I. Grácia, O. Chmela, E. Figueras, J. Hubálek, C. Cané,” Chemoresistive micromachined gas sensors based on functionalized metal oxide nanowires: Performance and reliability”, Sensors and Actuators B: Chemical , Vol. 235, pp. 525-534, (2016)
[104] Y. Seekaew, D. Phokharatkul, A. Wisitsoraat, C. Wongchoosuk, “Highly sensitive and selective room-temperature NO2 gas sensor based on bilayer transferred chemical vapor deposited graphene,” Applied Surface Science, Vol. 404, pp. 357-363 (2017)
[105] J. Wu, S. Feng, Z. Li, K. Tao, J. Chu, J. Miao, L. K. Norford, “Boosted sensitivity of graphene gas sensor via nanoporous thin film structures,” Sensors and Actuators B: Chemical, Vol. 255, pp. 1805-1813 (2018)
[106] S. S. Mohan, M. D. M. Hershenson, S. P. Boyd, T. H. Lee, “Simple accurate expressions for planar spiral inductances,” Journal of Solid-state Circuit, Vol. 34, pp. 1419-1424 (1999)
[107] T. L. Chang, C. Y. Chou, C. P. Wang, T. C. Teng, H. C. Han, “Picosecond laser-direct fabrication of graphene-based electrodes for a gas sensor module with wireless circuits,” Microelectronic Engineering, Vol. 210, pp. 19-26 (2019)
[108] S. Mutashar, M. A. Hannan, S. A. Samad, A. Hussain, “Analysis and optimization of spiral circular inductive coupling link for bio-implanted applications on air and within human tissue,” Sensors, Vol. 14, pp. 11522-11541 (2014)
[109] M. J. Toohey, “Electrodes for nanodot-based gas sensors,” Sensors and Actuators B, Vol. 105, pp. 232-250 (2005)
[110] S. P. Lee, “Electrodes for semiconductor gas sensor,” Sensors, Vol. 17, 683 (2017)
[111] J. A. Armstrong, “Measurement of picosecond laser pulse widths,” Applied Physics Letters, Vol. 10, 16 (1967)
[112] O. Uteza, B. Bussiere, F. Canova, J. P. Chambaret, P. Delaporte, T. Itina, M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Applied Surface Science, Vol. 254, pp. 799-803 (2007)
[113] C. Wei, Y. Ma, Y. Han, Y. Zhang, L. Yang, X. Chen, “Study on femtosecond laser processing characteristics of nanocrystalline CVD diamond coating,” Applied Sciences, Vol. 9, 4273 (2019)
[114] D. Deng, J. Zheng, X. Chen, W. Sun, “Fabrication and characterization of CuO nanowires on V-shaped microgroove surfaces,” Current Applied Physics, Vol. 28, pp. 26-34 (2021)
[115] D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, “Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method,” Physica B, Vol. 403, pp. 3713-3717 (2008)
[116] J. Qiu, X. Li, W. He, S. J. Park, H. K. Kim, Y. H. Hwang, J. H. Lee, Y. D. Kim, “The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method,” Nanotechnology, Vol. 20 (2009)
[117] C. Y. Chou, S. F. Teng, T. L. Chang, C. T. Tu, H. C. Han, “Controlled bridge growth of ZnO nanowires on laser-scribed graphene-based devices for NO gas detection,” Applied Surface Science, Vol. 508, 145204 (2020)
[118] A. Dedner, F. Kemm, D. Kröner, C. D. Munz, T. Schnitzer, M. Wesenberg, “Hyperbolic divergence cleaning for the MHD equations,” Journal of Computational Physics, Vol. 175, pp. 645-673 (2002)
[119] L. Xu , H. Y. Liu , N. Si , E. Wai, M. Lee, “Numerical simulation of a two-phase flow in the electrospinning process,” International Journal of Numerical Methods for Heat and Fluid, Vol. 24, pp. 1775-1761 (2014)
[120] M. J. Toohey, “Electrodes for nanodot-based gas sensors,” Sensors and Actuators B, Vol. 105, pp. 232-250 (2005)
[121] S. P. Lee, “Electrodes for semiconductor gas sensor,” Sensors, Vol. 17, 683 (2017)
[122] W. Chen, F. Li, P. C. Ooi, Y. Ye, T. W. Kim, T. Guo, ”Room temperature pH-dependent ammonia gas sensors using graphene quantum dots,” Sensors and Actuators B: Chemical, Vol. 222, pp. 763-768 (2016)
[123] Z. Ni, Y. Wang, T. Yu, Z. Shen, “Raman spectroscopy and imaging of graphene,” Nano Research, Vol. 1, pp. 273-291 (2008)
[124] L. M. Malard, M. A. Pimenta, G. Dresselhaus, M S. Dresselhaus, “Raman spectroscopy in graphene,” Physics Report, Vol. 43, pp.51-87 (2009)
[125] L. EL Fissi, V. Xhurdebise, L. A. Frances, “Effects of laser operating parameters on piezoelectric substrates micromachining with picosecond laser,” Micromachines, Vol. 6, pp. 19-31 (2015)
[126] L. Shao, Q. Li, C. Tan, K. Yao, J. Song, “A study of magnetic resonance wireless power transfer system based on half bridge inverter,” IEEE Vehicle Power and Propulsion Conference, Hangzhou, China (2016)
[127] M. M. Tarpey, I. Fridovich, “Methods of detection of vascular reactive species Nitric Oxide, Superoxide, Hydrogen Peroxide, and Peroxynitrite,” Circulation Research, Vol. 89, pp. 224-236 (2001)
[128] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Applied Physics Letters, Vol. 84, pp. 3654-3656 (2004)
[129] X. Dang, H. Hu, S. Wang, S. Hu, “Nanomaterials-based electrochemical sensors for nitric oxide,” Microchip Acta, pp. 445-467 (2015)