簡易檢索 / 詳目顯示

研究生: 周承穎
Chou, Cheng-Ying
論文名稱: 利用超快雷射製程製備石墨烯結構元件應用氣體偵測之研究
Investigation on Graphene Structure Devices by Ultrafast Laser Processing Technology for Gas Detection
指導教授: 張天立
Chang, Tien-Li
口試委員: 何正榮
Ho, Jeng-Rong
莊賀喬
Chuang, Ho-Chiao
鄭中緯
Cheng, Chung-Wei
張天立
Chang, Tien-Li
陳順同
Chen, Shun-Tong
楊啟榮
Yang, Chii-Rong
口試日期: 2022/01/27
學位類別: 博士
Doctor
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 121
中文關鍵詞: 超快雷射皮秒雷射石墨烯薄膜電極結構奈米線微溝槽氣體偵測
英文關鍵詞: Ultrafast laser, Picosecond laser, Graphene thin films, Electrode structures, Nanowires, Microgroove, Gas detection
DOI URL: http://doi.org/10.6345/NTNU202200344
論文種類: 學術論文
相關次數: 點閱:193下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Abstract II 總目錄 III 圖目錄 VI 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 超快雷射製程技術 5 1.3.1超快雷射之特性 6 1.3.2超快雷射之定義 7 1.4 氣體偵測元件 8 1.4.1氣體偵測元件的基本結構和特性 8 1.4.2氣體偵測元件的偵測機制 10 1.5 奈米線製程技術 12 1.5.1 水熱法 13 1.5.2 電紡絲法 14 1.6 氣體偵測元件的偵測材料 14 第二章 理論基礎與文獻回顧 17 2.1 超快雷射製程 19 2.2 氣體偵測材料 22 2.2.1 水熱法製作氧化鋅奈米線 23 2.3 以電紡絲法製作高分子奈米纖維 26 2.4 氣體偵測元件 27 第三章 研究設計 38 3.1 研究方法 38 3.2 石墨烯薄膜基板製作 39 3.3 氣體偵測元件的電極結構設計 40 3.3.1螺旋電極設計 40 3.3.2 指叉狀電極設計 43 3.4 超快雷射於石墨烯薄膜表面圖案化與結構化 43 3.5 氣體偵測元件製作 48 3.5.1無線傳輸式氣體偵測元件 48 3.5.2 直接傳輸式氣體偵測元件 49 3.5.2.1 ZnO奈米線氣體偵測元件 49 3.5.2.2 還原氧化石墨烯氣體偵測元件 51 3.6 氣體偵測機制 55 第四章 結果與討論 59 4.1 超快雷射圖案化與結構化 59 4.1.1 石墨烯膜薄製作與特性量測 59 4.1.2 超快雷射於石墨烯薄膜表面圖案化 61 4.1.3 超快雷射於石墨烯薄膜表面製作V型溝槽 72 4.2 無線氣體偵測元件 75 4.2.1 元件結構 75 4.2.2 偵測機制 75 4.2.3 一氧化碳氣體偵測 77 4.3 ZnO奈米線氣體偵測元件 79 4.3.1 具指叉狀電極的ZnO奈米線氣體偵測元件 80 4.3.2 具有V型溝槽的ZnO奈米線氣體偵測元件 85 4.3.3 ZnO奈米線對氣體的偵測機制 91 4.3.4 ZnO氣體偵測元件對一氧化氮氣體偵測 93 4.4 還原氧化石墨烯氣體偵測元件 95 4.4.1 偵測機制 97 4.4.2 rGO氣體偵測元件 98 4.4.3 rGO氣體偵測元件對一氧化氮氣體偵測 100 第五章 結論 105 第六章 未來展望 109 6.1 前言 109 6.2 未來展望 109 參考文獻 111

    參考文獻
    [1] “Ultrafast lasers market- growth, trends, COVID-19 impact, and forecasts (2022-2027),” Mordor Intelligence (2021)
    [2] “Micromachining market size, share & trends analysis report by type (traditional, non-traditional, hybrid), by process (additive, subtractive), by axis, by end use, by region, and segment forecasts, 2020-2027,” Grand View Research (2020)
    [3] “Gas sensor market size, share & trends analysis report6 by product6 (Oxygen/Lambda sensor, Carbon Dioxide sensor), by type (wired, wireless), by technology, by end used, by region, and segment forecasts,” Grand View Research, (Jan. 2021)
    [4] D. Kohl, “Function and application of gas sensors,” Journal of Physics D: Applied Physics, Vol. 34, pp. 125-149 (2001)
    [5] S. Mourya, A. Kumar, J. Jaiswal, G. Malik, B. Kumar, R. Chandra, “Development of Pd-Pt functionalized high performance H2 gas sensor based on silicon carbide coated porous silicon for extreme environment applications,” Sensors and Actuators B: Chemical, Vol. 283, pp. 373-383 (2019)
    [6] I. J. Choi, B. J. Kim, S. H. Lee, B. J. Jeong, T. Nasir, Y. S. Cho, N. Kim, J. H. Lee, J. Y. Choi, “Fabrication of a room-temperature NO2 gas sensor using morphology controlled CVD-grown tellurium nanostructures,” Sensors and Actuators B: Chemical, Vol. 333, 128891 (2021)
    [7] K. C. Hsu, T. H. Fang, Y. J. Hsiao, C. A. Chan, “Highly response CO2 gas sensor based on Au-La2O3 doped SnO2 nanofibers,” Materials Letters, Vol. 261, 127144 (2020)
    [8] W. Tian, X. Liu, W. Yu, “Research progress of gas sensor based on graphene and its derivatives: A review,” Applied Sciences, Vol. 8, 1118 (2018)
    [9] N. Anzar, R. Hasan, M. Tyagi, N. Yadav, J. Narang, “Carbon nanotube-A review on synthesis, properties and plethora of applications in the field of biomedical science,” Sensors International, Vol. 1, 100003 (2020)
    [10] H. Liu, L. Zhang, K. H. H. Li, O. K. Tan, “Microhotplated for metal oxide semiconductor gas sensor applications-towards the CMOS-MEMS monolithic approach,” Micromachines, Vol. 9, 557 (2018)
    [11] S. Mahajan, S. Jagtap, “Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review,” Applied Materials Today, Vol. 18, 100483 (2020)
    [12] G. Jung, Y. Hong, S. Hong, D. Jang, Y. Jeong, W. Shin, J. Park, D. Kim, C. B. Jeong, D. U. Kim, K. S. Chang, J. H. Lee, “A low-power embedded poly-Si microheater for gas sensor platform based on a FET transducer and its application of NO2 sensing,” Sensors and Actuators B: Chemical, Vol. 334, 129642 (2021)
    [13] Y. Nagaruina, Y. J. Hsiao, “Au doping ZnO nanosheets sensing properties of ethanol gas prepared on MEMS device,” Coatings, Vol. 10, 945 (2020)
    [14] J. Meng, Z. Li, “Schottky-contacted nanowire sensors,” Advanced Materials, Vol. 32, 2000130 (2020)
    [15] K. C. Phillips, H. H. Gandhi, E. Mazur, S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Advances in Optics and Photonics, Vol. 7, pp.684-712 (2015)
    [16] L. Lucas, J. Zhang, “Femtosecond laser micromachining: A back-to-basics primer,” Industrial Laser Solutions for Manufacturing, (July, 2012)
    [17] “雷射產業與技術發展趨勢,”工研院雷射中心 (2020)
    [18] K. Ko, J. Mendeloff, W. Gray, “The role of inspection sequence in compliance with the US Occupational Safety and Health Administration’s (OSHA) standards: Interpretations and implications,” Regulation & Governance, Vol. 4, pp. 48-70 (2010)
    [19] “An emerging market for CO2 gas sensors to assess COVID-19 transmission risk,” Smart Energy, (Nov. 2020)
    [20] “MEMS & Sensors challenges & opportunities for the next decade,” Claire Troadec of Yole Development, (April, 2016)
    [21] 馮晉嘉, “微小化生物感測器技術趨勢分析極發展政策建議,”工研院 IEK 生醫與生活組 (2002)
    [22] H. Nazemi, A. Joseph, J. Park, A. Emadi, “Advanced micro- and nano- gas sensor technology: A review,” Sensors, Vol. 19, 1285 (2019)
    [23] S. E. Moon, N. J. Choi, H. K. Lee, J. Lee, W. S. Yang, “Semiconductor-type MEMS gas sensor for real-time environmental monitoring applications,” ETRI Journal, Vol. 35, pp. 617-24 (2013)
    [24] C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor,” Sensors and Actuators B: Chemical, Vol. 128, pp. 320-325 (2007)
    [25] M. Wu, J. Shin, Y. Hong, D. Jang, X. Jin, H. I. Kwon, J. H. Lee, “An FET-type gas sensor with a sodium ion conducting solid electrolyte for CO2 detection,” Sensors and Actuators B: Chemical, Vol. 259, pp. 1058-1065 (2018)
    [26] J. Lee, N. J. Choi, H. K. Lee, S. Y. Lim, J. Y. Kwon, S. M. Lee, S. E. Moon, J. J. Jong, D. J. Yoo, “Low power consumption solid electrochemical-type micro CO2 gas sensor,” Sensors and Actuators B: Chemical, Vol. 248, pp. 957-960 (2017)
    [27] R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, “Zinc oxide nanostructures for NO2 gas-sensor applications: A review,” Nano-Micro Letter, Vol. 7, pp. 97-120 (2015)
    [28] M. Rieu, M. Camara, G. Tournier, J. P. Viricelle, C. Pijolat, N. F. Rooij, D. Briand, “Fully inkjet printed SnO2 gas sensor on plastic substrate,” Sensors and Actuators B: Chemical, Vol. 236, pp. 1091-1097 (2016)
    [29] E. Singh, M. Meyyappan, H.S. Nalwa, “Flexible graphene-based wearable gas and chemical sensors,” Applied Materials & Interfaces, Vol. 9, pp. 34544-34586 (2017)
    [30] O. Hayden, R. Agarwal, W. Lu, “Semiconductor nanowire devices,” Nanotoday, Vol. 3, pp. 12-22 (2008)
    [31] X. Zhao, P. Zhang, Y. Chen, Z. Su, G. Wei, “Recent advances in the fabrication and structure-specific applications of graphene-based inorganic hybrid membranes,” Nanoscale, Vol. 7, pp. 5080-5093 (2015)
    [32] Z. Lockman, S. T. Rahmat, N. Bashirom, M. Rozana, “Surface oxidation of metal for metal oxide nanowires formation,” 1-Dimensional Metal Oxide Nanostructures, pp.30 (2018)
    [33] G. Yang, S. J. Park, “Conventional and microwave hydrothermal synthesis and application of functional materials: A review,” Materials, Vol. 12, 1177 (2019)
    [34] Y. Li, J. Zhu, H. Cheng, G. Li, H. Cho, M. Jiang, Q. Gao, X. Zhang, “Developments of advanced electrospinning techniques: A critical review,” Advanced Materials Technologies, Vol. 6, 2100410 (2021)
    [35] H. D. Zhang, X. Yan, Z. H. Zhang, G. F. Yu, W. P. Han, J. C. Zhang, Y. Z. Long, “Electrospun PEDOT:PSS/PVP nanofibers for CO gas sensing with quartz crystal microbalance technique,” International Journal of Polymer Science, Vol. 2016 (2016)
    [36] K. H. Smith, E. T. Montes, M. Poch, A. Mata, “Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials,” The Royal Society of Chemistry, Vol. 40, pp. 4563-4577 (2011)
    [37] R. V. Kumar, D. J. Fray, “Development of solid-state hydrogen sensors,” Sensors and Actuators, Vol. 15, pp. 185-191 (1988)
    [38] J. Kuwano, T. Eguchi, Y. Saito, “Ambient temperature oxygen sensors based on fluoride solid electrolyte: the roles of the constituents in the sensing electrode mixtures containing phthalocyanines,” Talanta, Vol. 44, pp. 705-712 (1997)
    [39] J. Kuwato, M. Asano, K. Shigehara, M. Kato, “Ambient temperature solid-state oxygen sensor using fast ion conductors PbSnF4 and Ag6I4WO4,” Solid State Ionics, Vol. 41, pp. 472-475 (1997)
    [40] T. Lang, H-D Wiemhofer, W. Gopel, “Carbonate based CO2 sensors with high performance,” Sensor and Actuators: B, Vol. 34, pp. 383-387 (1996)
    [41] X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, H. Ning, “A survey on gas sensing technology,” Sensors, Vol. 12, pp. 9635-9665 (2012)
    [42] Z. L. Wang, “Splendid one-dimensional nanostructures of Zinc Oxide: A new nanomaterial family for nanotechnology,” ACS Nano, Vol. 2, pp. 1987-1992 (2008)
    [43] P. G. Choi, N. Izu, N. Shirahata, Y. MNasuda, “Improvement of sensing properties for SnO2 gas sensor by tuning of exposed crtystal face,” Sensors and Actuators B: Chemical, Vol. 296, 126655 (2019)
    [44] Z. Li, Z. Yao, A. A. Haidry, T. Plecenik, L. Xie, L. C. Sun, Q. Fatima, “Resistive-type hydrogen gas sensor based on TiO2: A review,” International Journal of Hydrogen Energy, Vol. 43, pp. 21114-21132 (2018)
    [45] V. S. Bhati, M. Hojamberdiev, M. Kumar, “Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review,” Vol. 6, pp. 46-62 (2020)
    [46] S. Pongodi, P. S. Kumar, D. Mangalaraj, N. Ponpandian, P. Meena, Y. Masuda, C. Lee, “Electrodeosition of WO3 nanostructured thin films for electrochromic and H2S gas sensor application,” Journal of Alloys and Compounds, Vol. 719, pp. 71-81 (2017)
    [47] D. Li, Y. Tang, D. Ao, X. Xiang, S. Wang, X. Zu, “Ultra-highly sensitive and selective H2S gas sensor based on CuO with sub-ppb detection limit,” International Journal of Hydrogen Energy, Vol. 44, pp. 3985-3992 (2019)
    [48] S. Zhang, M. Yang, K. Liang, A. Turak, B. Zhang, D. Meng, D. Wang, F. Qu, W. Cheng, M. Yang, “An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes,” Sensors and Actuators B: Chemical, Vol. 290, pp. 59-67 (2019)
    [49] P. Rai, Y.-S. Kim, H.-M. Song, M.-K. Song, Y.-T. Yu, “The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases”, Sensors and Actuators B, Vol. 165, pp. 133-142 (2012)
    [50] R. Sankar Ganesh, E. Durgadevi, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, “Low temperature ammonia gas sensor based on Mn-doped ZnO nanoparticle decorated microspheres”, Journal of Alloys Compounds, Vol. 721, pp. 182-190 (2017)
    [51] L. Zhu, W. Zeng, “Room-temperature gas sensing of ZnO-based gas sensor: A review,” Sensors and Actuators A: Physical, Vol. 267, pp. 242-261 (2017)
    [52] F. Rasch, V. Postica, F. Schütt, Y. K. Mishra, A. S. Nia, M. R. Lohe, X. Feng, R. Adelung, O. Lupan, “Highly selective and ultra-low power consumption metal oxide based hydrogen gas sensor employing grahene oxide as molecular sieve,” Sensors and Actuators B: Chemical, Vol. 320, 128363 (2020)
    [53] V. Haridas, A. Sukhananazerin, J. M. Sneha, B. Pullithadathil, B. Narayanaan, “α-Fe2O3 loaded less-defective graphene sheets as chemiresistive gas sensor for selective sensing of NH3,” Applied Surface Science, Vol. 517, 146158 (2020)
    [54] W. Zhang, S. Cao, Z. Wu, M. Zhang, Y. Cao, J. Guo, F. Zhong, H. Duan, D. Jia, “High-performance gas sensor of polyaniline/carbon nanotube comosites promoted by interface engineering,” Sensors, Vol. 20, 149 (2020)
    [55] H. Maeum, K. J. Keon, L. Junyeop, A. H. Kyung, Y. J. Pil, K. S. Won, J. Daewoong, “Room-temperature hydrogen-gas sensor based on carbon nanotube yarn,” Journal of Nanoscience and Nanotechnology, Vol. 20, pp. 4011-4014 (2020)
    [56] H. S. Hong, N. H. Ha, D. D. Thinh, N. H. Nam, N. T. Huong, N. T. Hue, T. V. Hoang, “ Enhanced sensitivity of self-powered NO2 gas sensor to sub-ppb level using triboelectrtic effect based on surface-modified PDMS and 3D-graphene/CNT network,” Nano Energy, Vol. 87, 106165 (2021)
    [57] W. Lubs, B. Wellegehausen, D. Zuber, U. Morgner, “Maiman revisited: tuneable single mode CW ruby ring laser,” Journal of Physics Communications, Vol. 5, 085012 (2021)
    [58] S. Hypsh, G. Shannon, “Femtosecond laser processing of meta.l and plastics in the medical device industry,” Industrial laser solutions (2014)
    [59] M. S. Kim, J. Son, H. Lee, H. Hwang, C. H. Choi, G. Kim, “Highly porous 3D nanofibrous scaffolds processed with an electrospinning/laser process,” Current Applied Physics, Vol. 14, pp. 1-7 (2014)
    [60] X. Yun, Z. Xiong, L. Tu, L. Bai, X. Wang, “Hierarchical porous graphene film: An ideal material for laser-carving fabircation of flexible micro-supercapacitors with high specific capacitance,” Carbon, Vol. 125, pp. 308-317 (2017)
    [61] K. Lee, H. Ki, “Fabrication, optimization of transparent conductive films using laser annealing and picosecond laser patterning,” Applied Surface Science, Vol. 420, pp. 886-895 (2017)
    [62] X. Wang, J. Zhang, X. Mei, B. Xu, J. Miao, “Laser fabrication of fully printed graphene oxide microsensor,” Optics and Lasers in Engineering, Vol. 140, (2021)
    [63] M. S. Kim, J. Son, H. Lee, H. Hwang, C. H. Choi, G. Kim, “Highly porous 3D nanofibrous scaffolds processed with an electrospinning/laser process,” Current Applied Physics, Vol. 14, pp. 1-7 (2014).
    [64] Y. Yu, P. C. Joshi, J. Wu, A. Hu, “Laser-induced carbon-based smart flexible sensor array for multiflavors detection,” ACS Appl. Mater. Interfaces, Vol. 10, pp. 34005-34012 (2018)
    [65] W. Liu, Y. Huang, Y. Peng, M. Walczak, D. Wang, Q. Chen, Z. Liu, L. Li, “Stable wearable strain sensors on textiles by direct laser writing of graphene,” ACS Appl. Nano Mater., Vol 3, pp. 283-293 (2020)
    [66] X. Shen, P. C. Hsiao, B. Phua, A. Stokes, V. R. Goncales, A. Lennon, “Plated metal adhesion to picosecond laser-ablated silicon solar cells: Influence of surface chemistry and wettability,” Solar Energy Materials & Solar Cells, Vol. 205 (2020)
    [67] R. A. Rajan, C. V. Ngo, J. Yang, Y. Liu, K. S. Rao, C. Guo, “Femtosecond and picosecond laser fabrication for long-term superhydrophilic metal surfaces,” Optics and Laser Technology, Vol. 143 (2021)
    [68] T. Zhou, T. Zhang, “Recent progress of nanostructured sensing materials from 0D to 3D: Overview of structure-property-application relationship for gas sensors,” Vol. 5, 2100515 (2021)
    [69] S. S. Brenner, “The growth of whiskers by the reduction of metal salts,” Acta Metallurgica, Vol. 4, pp. 62-74 (1956)
    [70] R. Fabiha, A. Casey, G. Triplett, S. Bandyopadhyay, “Low temperature growth of germanium oxide nanowires by template based self assembly and their Raman characterization,” Oxide Electronics, Ch. 5 (2021)
    [71] P. M. Kakade, A. R. Kachere, N. T. Mandlik, S. R. Rondiya, S. R. Jadkar, S. V. Bhosale, “Graphene oxide assisted synthesis of magnesium oxide nanorods,” ES Materials & Manufacturing, Vol. 12, pp. 63-71 (2021)
    [72] K. Ye, B. Wang, A. Nie, K. Zhai, F. Wen, C. Mu, Z. Zhao, J. Xiang, Y. Tian, Z. Liu, “Broadband photodetector of high quality Sb2S3 nanowire grown by chemical vapor deposition,” Journal of Materials Science & Technology, Vol. 75, pp. 14-20 (2021)
    [73] B. Cho, J. Yoon, M. G. Hahm, D. H. Kim, A. R. Kim, Y. H. Kahng, S. W. Park, Y. J. Lee, S. G. Park, J. D. Kwon, C. S. Kim, M. Song. Y. Jeong, K. S. Nam, H. C. Ko, “Graphene-based gas sensor: metal decoration effect and application to a flexible device,” Journal of Materials Chemistry C, Vol. 2, pp. 5280-5285 (2014)
    [74] M. S. Park, K. H. Kim, M.J. Kim, Y. S. Lee, “NH3 gas sensing properties of a gas sensor based on fluorinatedgraphene oxide,” Colloids and Surfaces A: Physicochemical and Engineering Aspects , Vol. 490, pp. 104-109 (2016)
    [75] S. M. J. Khadem, Y. Abdi, S. Darbari, F. Ostovari, “Investigating the effect of gas absorption on the electromechanical and electrochemical behavior of graphene/ZnO structure, suitable for highly selective and sensitive gas sensors,” Current Applied Physics, Vol. 14, pp. 1498-1503 (2014)
    [76] M. Assar, R. Karimzadeh, “Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation”, Journal of Colloid and Interface Science, Vol. 483, pp. 275-280 (2016).
    [77] S. Vallejos, I. Grácia, O. Chmela, E. Figueras, J. Hubálek, C. Cané, “Chemoresistive micromachined gas sensors based on functionalized metal oxide nanowires: Performance and reliability”, Sensors and Actuators B: Chemical, Vol. 235, pp. 525-534 (2016)
    [78] R. Kumara, D. K. Avasthi, A. Kaur, “Fabrication of chemiresistive gas sensors based on multistep reduced graphene oxide for low parts per million monitoring of sulfur dioxide at room temperature”, Sensors and Actuators B: Chemical, Vol. 242, pp. 461-468 (2017).
    [79] R. You, D. D. Han, F. Liu, Y. L. Zhang, G. Lu, “Fabrication of flexible room-temperature NO2 sensors by direct laser writing of In2O3 and graphene oxide composites,” Sensors and Actuators B: Chemical, Vol. 277, pp. 114-120 (2018)
    [80] J. Cai, C. Lv, E. Aoyagi, S. Ogawa, A. Watanabe, “Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics,” Applied Materials and Interfaces, Vol. 10, pp. 23987-23996 (2018)
    [81] C. C. Cesar, M. C. Gnambodoe, Y. L. Wang, “Growth mechanism studies of ZnO nanowire arrays via hydrothermal method,” Applied Physics A, Vol. 115, pp. 953-960 (2014)
    [82] M. Jiao, N. V. Chien, N. V. Duy, N. D. Hoa, N. V. Hieu, K. Hjort, H. Nguyen, “On-chip hydrothermal growth of ZnO nanorods at low temperature for highly selective NO2 gas sensor,” Materials Letters, Vol. 169, pp. 231-235 (2016)
    [83] Z. Rafiee, H. Roshan, M. H. Sheikhi, “Low concentration ethanol sensor based on graphene/ZnO nanowires”, Ceramics International, Vol. 47, pp. 5311-5317 (2021)
    [84] T. Zhang, X. Zhang, B. Ding, J. Shen, Y. Hu and H. Gu, “Homo-epitaxial secondary growth of ZnO nanowire arrays for a UV-free warm white light-emitting diode application,” Applied Optics, Vol. 59, pp. 2498-2504 (2020)
    [85] Y. Xiao, H. Wang, F. Awai, N. Shibayama, T. Kubo, H. Segawa, “Eco-friendly AgBiS2 nanocrystal/ZnO nanowire heterojuction solar cells with enhanced carrier collection efficiency,” ACS Applied Material & Interfaces, Vol. 13, pp. 3969-3978 (2021)
    [86] L. R. Raj, S. Valanarasu, K. Hariprasad, J. S. ponraj, N. Chidhambaram, V. Ganesh, H. E. Ali, Y. Khairy, “Enhancement of optoelectronic parameters of Nd-dopted ZnO nanowires for photodetector applications,” Optical Materials, Vol. 109, 110396 (2020)
    [87] L. Cai, H. Li, H. Zhang, W. Fan, J. Wang, Y. Wang, X. Wang, Y. Tang, Y. Song, “Enhanced performance of the tangerines-like CuO-based gas sensor using ZnO nanowire arrays,” Materials Science in Semiconductor Processing, Vol. 118, 105196 (2020)
    [88] X. Zhang, W. Wang, D. Zhang, Q. Mi, S. Yu, “Self-powered ethanol gas sensor based on the piezoelectric Ag/ZnO nanowire arrays at room temperature,” Journal of Material Science: Material Electron, Vol. 32, pp. 7739-7750 (2021)
    [89] T. J. Hsueh, C. H. Peng, W. S. Chen, “A transparent ZnO nanowire MEMS gas sensor prepared by an ITO micro-heater,” Sensors and Actuators B: Chemical, Vol. 304, 127319 (2020)
    [90] Y. H. Liu, S. J. Chang, L. T. Lai, Y. P. Tu, S. J. Young, “Aluminum-doped zinc oxide nanorods and methyl alcohol gas sensor application,” Microsystem Technologies (2020)
    [91] Z. Yu, J. Gao, L. Xu, T. Liu, Y. Liu, X. Wang, H. Suo, C. Zhao, “Fabrication of lettuce-like ZnO gas sensor with enhanced H2S gas sensitivity,” Crystals, Vol. 10, 145 (2020)
    [92] J. Xue, T. Wu, Y. Dai, Y. Xia, “Electrospinning and elctrospun nanofibers: Methods, Materials, and Applications,” Chemical Reviews, Vol. 119, pp. 5298-5415 (2019)
    [93] H. D. Zhang, X. Yan, Z. H. Zhang, G. F. Yu, W. P. Han, J. C. Zhang, Y. Z. Long, “Electrospun PEDOT:PSS/PVP nanofibers for CO gas sensing with quartz crystal microbalance technique,” International Journal of Polymer Science, Vol. 2016 (2016)
    [94] M. C. Han, H. W. He, B. Zhang, X. X. Wang, J. Zhang, M. H. You, S. Y. Yan, Y. Z. Long, “Fabrication of Ag nanowire/polymer composite nanocables via direct electrospinning,” Materials Research Express, Vol. 4 (2017)
    [95] C. L. Hsu, L. F. Chang, T. J. Hsueh, “Light-activated humidity and gas sensing by ZnO nanowires grown on LED at room temperature,” Sensors and Actuators B: Chemical, Vol. 249, pp. 265-277 (2017)
    [96] S. L. Marasso, A. Tommasi, D. Perrone, M. Cocuszza, R. Mosca, M. Villani, A. Zappettini, D. Calestani, “A new method to integrate ZnO nanotetrapods on MEMS micro-hotplates for large scale gas sensor production,” Nanotechnology, Vol. 27 (2016)
    [97] Y. Zhang, J. Zhang, Y. Jiang, Z. Duan, B. Liu, Q. Zhao, S. Wang, Z. Yuan, H. Tai, “Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection ability at room temperature,” Sensors and Actuators B: Chemical, Vol. 319, 128293 (2020)
    [98] P. S. Shewale and K. S. Yun, “Synthesis, characterization of Cu-doped ZnO/RGO nanocomposites for room-temperature H2S gas sensor,” Journal of Alloys and Compounds, Vol. 837, 155527 (2020)
    [99] Y. Tu, C. Kyle, H. Luo, D. W. Zhang, A. Das, J. Briscoe, S. Dunn, M. M. Titirici, S. Krause, “Ammonia gas sensor response of a vertical zinc oxide nanorod-gold junction diode at room temperature,” Sensors, Vol. 5, pp. 3568-3575 (2020)
    [100] N. Pienutsa, P. Roongruangsree, V. Seedokbuab, K. Yannawibut, C. Phatoomvijitwong, S. Srinives, “SnO2-grahene composite gas sensor for a room temperature detection for ethanol,” Nanotechnology, Vol. 32, 115502 (2021)
    [101] M. Wang, Y. Zhu, D. Meng, K. Wang, C. Wang, “A novel room temperature ethanol gas sensor based on 3D hierarchical flower-like TiO2 microstructures,” Materials Letters, Vol. 277, 128372 (2020)
    [102] M. Assar, R. Karimzadeh,“Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation”, Journal of Colloid and Interface Science, Vol. 483, p.p. 275-280, (2016)
    [103] S. Vallejos, I. Grácia, O. Chmela, E. Figueras, J. Hubálek, C. Cané,” Chemoresistive micromachined gas sensors based on functionalized metal oxide nanowires: Performance and reliability”, Sensors and Actuators B: Chemical , Vol. 235, pp. 525-534, (2016)
    [104] Y. Seekaew, D. Phokharatkul, A. Wisitsoraat, C. Wongchoosuk, “Highly sensitive and selective room-temperature NO2 gas sensor based on bilayer transferred chemical vapor deposited graphene,” Applied Surface Science, Vol. 404, pp. 357-363 (2017)
    [105] J. Wu, S. Feng, Z. Li, K. Tao, J. Chu, J. Miao, L. K. Norford, “Boosted sensitivity of graphene gas sensor via nanoporous thin film structures,” Sensors and Actuators B: Chemical, Vol. 255, pp. 1805-1813 (2018)
    [106] S. S. Mohan, M. D. M. Hershenson, S. P. Boyd, T. H. Lee, “Simple accurate expressions for planar spiral inductances,” Journal of Solid-state Circuit, Vol. 34, pp. 1419-1424 (1999)
    [107] T. L. Chang, C. Y. Chou, C. P. Wang, T. C. Teng, H. C. Han, “Picosecond laser-direct fabrication of graphene-based electrodes for a gas sensor module with wireless circuits,” Microelectronic Engineering, Vol. 210, pp. 19-26 (2019)
    [108] S. Mutashar, M. A. Hannan, S. A. Samad, A. Hussain, “Analysis and optimization of spiral circular inductive coupling link for bio-implanted applications on air and within human tissue,” Sensors, Vol. 14, pp. 11522-11541 (2014)
    [109] M. J. Toohey, “Electrodes for nanodot-based gas sensors,” Sensors and Actuators B, Vol. 105, pp. 232-250 (2005)
    [110] S. P. Lee, “Electrodes for semiconductor gas sensor,” Sensors, Vol. 17, 683 (2017)
    [111] J. A. Armstrong, “Measurement of picosecond laser pulse widths,” Applied Physics Letters, Vol. 10, 16 (1967)
    [112] O. Uteza, B. Bussiere, F. Canova, J. P. Chambaret, P. Delaporte, T. Itina, M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Applied Surface Science, Vol. 254, pp. 799-803 (2007)
    [113] C. Wei, Y. Ma, Y. Han, Y. Zhang, L. Yang, X. Chen, “Study on femtosecond laser processing characteristics of nanocrystalline CVD diamond coating,” Applied Sciences, Vol. 9, 4273 (2019)
    [114] D. Deng, J. Zheng, X. Chen, W. Sun, “Fabrication and characterization of CuO nanowires on V-shaped microgroove surfaces,” Current Applied Physics, Vol. 28, pp. 26-34 (2021)
    [115] D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, “Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method,” Physica B, Vol. 403, pp. 3713-3717 (2008)
    [116] J. Qiu, X. Li, W. He, S. J. Park, H. K. Kim, Y. H. Hwang, J. H. Lee, Y. D. Kim, “The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method,” Nanotechnology, Vol. 20 (2009)
    [117] C. Y. Chou, S. F. Teng, T. L. Chang, C. T. Tu, H. C. Han, “Controlled bridge growth of ZnO nanowires on laser-scribed graphene-based devices for NO gas detection,” Applied Surface Science, Vol. 508, 145204 (2020)
    [118] A. Dedner, F. Kemm, D. Kröner, C. D. Munz, T. Schnitzer, M. Wesenberg, “Hyperbolic divergence cleaning for the MHD equations,” Journal of Computational Physics, Vol. 175, pp. 645-673 (2002)
    [119] L. Xu , H. Y. Liu , N. Si , E. Wai, M. Lee, “Numerical simulation of a two-phase flow in the electrospinning process,” International Journal of Numerical Methods for Heat and Fluid, Vol. 24, pp. 1775-1761 (2014)
    [120] M. J. Toohey, “Electrodes for nanodot-based gas sensors,” Sensors and Actuators B, Vol. 105, pp. 232-250 (2005)
    [121] S. P. Lee, “Electrodes for semiconductor gas sensor,” Sensors, Vol. 17, 683 (2017)
    [122] W. Chen, F. Li, P. C. Ooi, Y. Ye, T. W. Kim, T. Guo, ”Room temperature pH-dependent ammonia gas sensors using graphene quantum dots,” Sensors and Actuators B: Chemical, Vol. 222, pp. 763-768 (2016)
    [123] Z. Ni, Y. Wang, T. Yu, Z. Shen, “Raman spectroscopy and imaging of graphene,” Nano Research, Vol. 1, pp. 273-291 (2008)
    [124] L. M. Malard, M. A. Pimenta, G. Dresselhaus, M S. Dresselhaus, “Raman spectroscopy in graphene,” Physics Report, Vol. 43, pp.51-87 (2009)
    [125] L. EL Fissi, V. Xhurdebise, L. A. Frances, “Effects of laser operating parameters on piezoelectric substrates micromachining with picosecond laser,” Micromachines, Vol. 6, pp. 19-31 (2015)
    [126] L. Shao, Q. Li, C. Tan, K. Yao, J. Song, “A study of magnetic resonance wireless power transfer system based on half bridge inverter,” IEEE Vehicle Power and Propulsion Conference, Hangzhou, China (2016)
    [127] M. M. Tarpey, I. Fridovich, “Methods of detection of vascular reactive species Nitric Oxide, Superoxide, Hydrogen Peroxide, and Peroxynitrite,” Circulation Research, Vol. 89, pp. 224-236 (2001)
    [128] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Applied Physics Letters, Vol. 84, pp. 3654-3656 (2004)
    [129] X. Dang, H. Hu, S. Wang, S. Hu, “Nanomaterials-based electrochemical sensors for nitric oxide,” Microchip Acta, pp. 445-467 (2015)

    無法下載圖示 電子全文延後公開
    2027/02/14
    QR CODE