研究生: |
周子琳 Chou, Tzu-Lin |
---|---|
論文名稱: |
無重金屬量子點材料合成與發光二極體應用 Development of Heavy-Metal Free Quantum Dots Applied in Light-Emitting Diodes |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 無重金屬量子點 、奈米材料 、發光二極體 |
英文關鍵詞: | Heavy-metal free Quantum dots, Nanomaterials, Light-emitting diode |
DOI URL: | http://doi.org/10.6345/NTNU201900039 |
論文種類: | 學術論文 |
相關次數: | 點閱:303 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體量子點因具有獨特的發光特性,其具有高色彩純度、能階可調性與可延展性,將其應用於發光二極體為現今科技之趨勢,目前於應用端表現最好之量子點材料鎘,以及新興的無機鈣鈦礦量子點CsPbX3(X=Cl、Br與I)卻都因為其材料中重金屬的毒性而限制了其商用化的發展,對於環境的影響也是一大隱憂,因此目前許多研究都是為了尋求替代的材料。
本篇論文中,我們首先較安全便宜之六甲基三氨基磷作為前驅物用熱注射法合成無重金屬之磷化銦/硫化鋅核殼量子點,其合成出來之相對量子效率大約60.1%,放光之半高寬為42nm,並測試此材料之熱穩定度發現其在七十度時製作發光二極體元件具有最佳之量子效率,此元件開啟電壓5 V,在12 V時具有最高亮度160 cd/m2,在6.7 V時外部量子效率為0.223%,雖然此種效率還無法拿來實際應用,但其具有環保與低成本,在未來具有極高的潛力。
再來我們將CsPbCl3中的Pb使用錫與錳做取代,成功合成出量子點,對其做光學鑑定及結構鑑定,發現其吸收值隨錳比例增加而有藍移的現象,並具有螢光,雖然量子效率並不高,但此種材料也為無重金屬量子點開啟了新篇章。
Semiconductor quantum dots have unique optical properties, like high-luminescent, high color purity and wide color gamut which depend on both size and shape. Nowadays, the best performing quantum dots at the application end are CdSe. However, due to the toxicity of the Cd have limited the commercialization. The high luminescent inorganic perovskite quantum dot CsPbX3 (X=Cl, Br and I), which are also been limited because of the Pb. The impact on the environment is also a major concern, as a result many studies are currently seeking alternative materials, that are environment-friendly.
In this work, heavy-metal-free InP/ZnS core/shell QDs were prepared by (DMA)3P precursors, which are low cost and safe. The InP/ZnS core/shell QDs with fluorescence quantum yield of 60.1%, and full width at half maximum of 42 nm were applied as an emission layer to QD-LEDs. The QD-LEDs showed the turn-on voltage at ~ 5 V, the highest luminance (160 cd/m2) at 12 V, and the external quantum efficiency of 0.223% at 6.7 V. Overall, InP/ZnS core/shell QD-LEDs reveal potential to be the heavy-metal-free QD-LEDs for future display applications.
On the other hands, we replace the Pb ions in CsPbCl3 crystals with Sn(II) ions and Mn(II) ions. Mn: CsSnCl3 had been successfully synthesis, and characterized optical properties and structure properties. Although the photoluminescent performance is not ideal, the material open an new option for Heavy-Metal free quantum dots.
[1] 陳家俊、牟中原, 奈米材料研究發展. 科學發展月刊 2000, 28(4), 281-288.
[2] R. Kubo, Electronic Properties of Metallic Fine Particles. I. Journal of the Physical Society of Japan 1962, 17 (6), 975–986.
[3] P. E. Lippens, M. Lannoo, Calculation of the Band Gap for Small CdS and ZnS Crystallites. Physical Review B 1989, 39 (15), 10935–10942.
[4] E. Roduner, Size Matters: Why Nanomaterials Are Different. Chemical Society Reviews 2006, 35 (7), 583–592.
[5] G. Chansin, X. He, Quantum Dots 2016-2026: Applications, Markets, Manufacturers. 2015.
[6] C. de Mello Donegá, P. Liljeroth, D. Vanmaekelbergh, Physicochemical Evaluation of the Hot‐Injection Method, a Synthesis Route for Monodisperse Nanocrystals. Small 2005, 1 (12), 1152-1162.
[7] V. K. LaMer, R. H. Dinegar, Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. Journal of the American Chemical Society 1950, 72 (11), 4847-4854.
[8] R. García-Rodríguez, M. P. Hendricks, B. M. Cossairt, H. Liu, J. S. Owen, Conversion Reactions of Cadmium Chalcogenide Nanocrystal Precursors. Chemistry of Materials 2013, 25 (8), 1233-1249.
[9] W. R. Algar, K. Susumu, J. B. Delehanty, I. L. Medintz, Semiconductor Quantum Dots in Bioanalysis: Crossing the Valley of Death. Analytical Chemistry 2011, 83 (23), 8826-8837.
[10] P. M. Allen, W. Liu, V. P. Chauhan, J. Lee, A. Y. Ting, D. Fukumura, R. K. Jain, M. G. Bawendi, InAs(ZnCdS) Quantum Dots Optimized for Biological Imaging in the Near-Infrared. Journal of the American Chemical Society 2010, 132 (2), 470-471.
[11] S.-H. Wei, A. Zunger, Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals. Applied Physics Letters 1998, 72 (16), 2011-2013.
[12] J. Lim, W. K. Bae, J. Kwak, S. Lee, C. Lee, K. Char, Perspective on synthesis, device structures, and printing processes for quantum dot displays. Opt. Mater. Express 2012, 2 (5), 594-628.
[13] E. Petryayeva, W. R. Algar, I. L. Medintz, Quantum Dots in Bioanalysis: A Review of Applications across Various Platforms for Fluorescence Spectroscopy and Imaging. Applied Spectroscopy 2013, 67 (3), 215-252.
[14] L. M. Roth, in Basic Properties of Semiconductors, Elsevier, Amsterdam, 1992, pp. 489–581.
[15] D. Bera, L. Qian, S. Sabui, S. Santra, P. H. Holloway, Photoluminescence of ZnO Quantum Dots Produced by a Sol–Gel Process. Optical Materials 2008, 30 (8), 1233–1239.
[16] H. Yang, P. H. Holloway, Efficient and Photostable ZnS-Passivated CdS:Mn Luminescent Nanocrystals. Advanced Functional Materials 2004, 14 (2), 152–156.
[17] M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, U. Resch-Genger, Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties. Analytical Chemistry 2009, 81 (15), 6285–6294.
[18] J. Laverdant, W. D. de Marcillac, C. Barthou, V. D. Chinh, C. Schwob, L. Coolen, P. Benalloul, P. T. Nga, A. Maitre, Experimental Determination of the Fluorescence Quantum Yield of Semiconductor Nanocrystals. Materials 2011, 4 (7), 1182–1193.
[19] S. Shen, Q. Wang, Rational Tuning the Optical Properties of Metal Sulfide Nanocrystals and Their Applications. Chemistry of Materials 2013, 25 (8), 1166-1178.
[20] P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, V. Bulović, Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum. Nano Letters 2009, 9 (7), 2532-2536.
[21] X. Yang, D. Zhao, K. S. Leck, S. T. Tan, Y. X. Tang, J. Zhao, H. V. Demir, X. W. Sun, Full Visible Range Covering InP/ZnS Nanocrystals with High Photometric Performance and Their Application to White Quantum Dot Light‐Emitting Diodes. Advanced Materials 2012, 24 (30), 4180-4185.
[22] T. Omata, K. Nose, S. Otsuka-Yao-Matsuo, Size dependent optical band gap of ternary I-III-VI2 semiconductor nanocrystals. Journal of Applied Physics 2009, 105 (7), 073106.
[23] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050–6051.
[24] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters 2015, 15 (6), 3692–3696.
[25] A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury, A. Nag, Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. Angew. Chem.-Int. Edit. 2015, 54 (51), 15424–15428.
[26] Y. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. W. Gong, P. Kanjanaboos, A. F. Nogueira, E. H. Sargent, Efficient Luminescence from Perovskite Quantum Dot Solids. ACS Appl. Mater. Interfaces 2015, 7 (45), 25007–25013.
[27] J. Chen, D. Liu, M. J. Al-Marri, L. Nuuttila, H. Lehtivuori, K. Zheng, Photo-Stability of CsPbBr3 Perovskite Quantum Dots for Optoelectronic Application. Science China Materials 2016, 59 (9), 719–727.
[28] Z. Chen, J. J. Wang, Y. H. Ren, C. L. Yu, K. Shum, Schottky Solar Cells Based on CsSnI3 Thin-Films. Applied Physics Letters 2012, 101 (9).
[29] T. C. Jellicoe, J. M. Richter, H. F. J. Glass, et al., Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals. Journal of the American Chemical Society 2016, 138 (9), 2941–2944.
[30] A. Wang, X. Yan, M. Zhang, S. Sun, M. Yang, W. Shen, X. Pan, P. Wang, Z. Deng, Controlled Synthesis of Lead-Free and Stable Perovskite Derivative Cs2SnI6 Nanocrystals via a Facile Hot-Injection Process. Chemistry of Materials 2016, 28 (22), 8132–8140.
[31] D. Parobek, B. J. Roman, Y. Dong, H. Jin, E. Lee, M. Sheldon, D. H. Son, Exciton-to-Dopant Energy Transfer in Mn-Doped Cesium Lead Halide Perovskite Nanocrystals. Nano Letters 2016, 16 (12), 7376-7380.
[32] D. Chen, G. Fang, X. Chen, Silica-Coated Mn-Doped CsPb(Cl/Br)3 Inorganic Perovskite Quantum Dots: Exciton-to-Mn Energy Transfer and Blue-Excitable Solid-State Lighting. ACS Appl. Mater. Interfaces 2017, 9 (46), 40477-40487.
[33] 陳韋廷, 白光發光二極體用螢光粉原理及其特性. 光連雙月刊 2011, 94, 62-68.
[34] 陳學仕, 量子點之產業應用與未來發展. 工研院產業應用專刊 2004, 13.
[35] P. Pust, P. J. Schmidt, W. Schnick, A Revolution in Llighting. Nat Mater 2015, 14 (5), 454–458.
[36] X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96.
[37] Y. Shirasaki, G. J. Supran, M. G. Bawendi, V. Bulović, Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics 2012, 7, 13.
[38] D. C. Harris, Quantitative Chemical Analysis, W. H. Freeman, 2010.
[39] 維基百科編者, 穿透式電子顯微鏡.
[40] 林麗娟, X光繞射原理及其應用. 工業材料 1994, 86, 100-109.
[41] J. Goldstein, Scanning Electron Microscopy and X-Ray Microanalysis, Springer US, 2003.
[42] V. A. Solé, E. Papillon, M. Cotte, P. Walter, J. Susini, A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochimica Acta Part B: Atomic Spectroscopy 2007, 62 (1), 63-68.
[43] M. D. Tessier, D. Dupont, K. De Nolf, J. De Roo, Z. Hens, Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots. Chemistry of Materials 2015, 27 (13), 4893-4898.
[44] J. Zhang, X. Zhang, J. Y. Zhang, Dependence of Microstructure and Luminescence on Shell Layers in Colloidal CdSe/CdS Core/Shell Nanocrystals. The Journal of Physical Chemistry C 2010, 114 (9), 3904-3908.