研究生: |
黃士瑋 Huang, Shih-Wei |
---|---|
論文名稱: |
臺灣國中STEM資優課程內涵發展之研究 The Study on the Connotation Development of STEM Education Curriculum for Junior High School Gifted Students in Taiwan |
指導教授: |
林坤誼
Lin, Kuen-Yi |
口試委員: |
簡佑宏
Chien, Yu-Hung 陳玫良 Chen, Mei-Liang 林坤誼 Lin, Kuen-Yi |
口試日期: | 2022/06/23 |
學位類別: |
碩士 Master |
系所名稱: |
科技應用與人力資源發展學系 Department of Technology Application and Human Resource Development |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 118 |
中文關鍵詞: | STEM資優課程 、資優教育 、資優教師 、德懷術 |
英文關鍵詞: | Delphi, GATE, GATE teacher, gifted and talented education, STEM education for gifted students |
研究方法: | 德爾菲法 |
DOI URL: | http://doi.org/10.6345/NTNU202200706 |
論文種類: | 學術論文 |
相關次數: | 點閱:137 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在發展臺灣國中STEM資優課程之內涵,透過德懷術邀請十二位專家組成專家小組,其中包含科學、科技、工程、數學與資優領域的十位大學教授,以及兩位現職國中資優教師,以專家自身經驗以及各自領域之專業知識提供相關意見,協助發展臺灣國中STEM資優課程內涵。根據研究結果,本研究透過兩回合德懷術問卷調查,將培育臺灣國中資優學生的跨領域研究知能、跨領域研究能力與跨領域專業倫理三項目標作為臺灣國中STEM資優課程的學習目標。另外,此課程以工程設計作為跨領域研究方法,發展出合計十九項學習表現與十六項學習內容,作為臺灣國中STEM資優課程內涵。本次研究成果除了可供臺灣未來於資優人才培育的相關政策與計畫提供建議,更可使現職資優教師於未來在規劃與實施STEM資優課程時,可以此課程內涵作為課程規劃之參考。
The purpose of this research is to develop the connotation of STEM curriculum for junior high school gifted students in Taiwan. This research employed the Delphi techniques and invited twelve experts to form an expert panel, including ten professors in the fields of science, technology, engineering, mathematics and gifted education and two current gifted and talented education [GATE] teachers in junior high school. They provided relevant opinions which based on their own experience and professional knowledge in their respective fields to assist to the development of the connotation of the STEM education curriculum for junior high school gifted students in Taiwan. According to the results of the research, we developed three objectives which included cultivating the interdisciplinary research knowledge, interdisciplinary research ability and interdisciplinary professional ethics as the learning objectives of the STEM education curriculum for junior high school gifted students in Taiwan through two rounds of Delphi technique questionnaires. In addition, we used engineering design as an interdisciplinary research method in the curriculum, and developed nineteen items of learning performances and sixteen items of learning contents as the connotation of the STEM education curriculum for junior high school gifted students in Taiwan. The results of this research can not only provide relevant suggestions for the GATE policies and plans for the cultivation of gifted and talented people in the future in Taiwan, but also serve as a reference for current GATE teachers to plan and implement STEM courses for gifted students.
ㄧ、中文部分
于曉平(2010)。區域性資優教育方案的理念與實施。資優教育季刊,114,8-15。
王佳琪(2017)。十二年國民基本教育課程綱要總綱之核心素養課程:評量的觀點。臺灣教育評論月刊,6(3),35-42。
王昭傑(2012)。法令政策與研究證據的互動—由他山之石檢視臺灣資優教育政策的擬定與修正。資優教育季刊,124,31-40。
吳明隆(2006)。SPSS操作與應用—問卷統計分析實務。五南圖書。
吳明隆、涂金堂(2005)。SPSS與統計應用分析。五南圖書公司。
吳武典(2013)。資優教育中的爭議與平議:全球視野,在地行動。資優教育論壇,11,1-15。
吳武典(2013):臺灣資優教育四十年(一):回首前塵。資優教育季刊,126,1-11。
李隆盛(1999)。國教九年一貫科技領域的課程、教學與評鑑。生活科技教育月刊,32(5),2-6。
周家卉(2008)。實作評量在生活科技課程實施之探討。生活科技教育月刊。41(7),51-83。
范斯淳(2016)。高中工程設計取向之課程設計與實驗:跨學科 STEM 知識的整合與應用(未出版之碩士論文)。國立臺灣師範大學,臺北市。
范斯淳、游光昭(2016)。科技教育融入 STEM 課程的核心價值與實踐。教育科學研究期刊,61(2),153-183。
國家發展委員會(2007)。都市及區域發展統計彙編。國家發展委員會。
教育部(2019)。十二年國民基本教育資賦優異相關之特殊需求領域課程綱要。臺北市:作者。
莊佩綺(2019)。指導國中資優生獨立研究之歷程分析—以臺中市某國中為例(未出版之碩士論文)。逢甲大學,臺中市。
郭靜姿、吳淑敏、侯雅齡、蔡桂芳(2006)。鑑定與安置。教育部「全國資優教育發展研討會」手冊,5-20。教育部。
陳昭儀、林秋萍、李家兆、陳偉仁、馮理詮(2014)。資優教育均衡發展之規劃與實踐。資優教育季刊,133,1-8。
陳強、趙一清、常旭華(2017)。世界主要國家的STEM教育及實施策略。中國科技論壇,10,168-176。
童品華(2017)。臺中市公立國中資賦優異資源班教育實施現況之研究(未出版之碩士論文)。國立臺南大學,臺南市。
楊孟麗、謝水南(譯)(2013)。J. R. Fraenkel, N. E. Wallen, & H. H. Hynn 著。教育研究法:研究設計實務(第二版)。心理出版社。
楊俊鴻(2019)。如何依十二年國教課程綱要撰寫教學單元的學習目標?臺灣教育評論月刊,8(2),50-55。
葉玉珠(2002)。高層次思考教學設計的要素分析。通識教育學報,1,75-101。
劉協成(2006)。德懷術之理論與實務初探。教師之友,47(4),91- 99。
蔡廷科(2014)。學校裡的創客空間-以國立內壢高中特色課程為例。中等教育,65(4),129-140。
蔡蕙文(2008)。STEM教學模式應用於國中自然與生活科技領域教學之研究 (未出版之碩士論文)。國立屏東科技大學,屏東縣。
羅希哲、陳柏豪、石儒居、蔡華齡、蔡慧音(2009)。STEM整合式教學法在國民中學自然與生活技術領域之研究。人文社會科學研究,3(3),42-66。
二、外文部分
Akgündüz, D., Aydeniz, M., Çakmakçı, G., Çavaş, B., Çorlu, M. S., Öner, T., & Özdemir, S. (2015). STEM eğitimi Türkiye raporu. Scala Basım.
Ambrose, D., & Sternberg, R. J. (2016). Previewing a collaborative exploration of gifted education and talent development in the 21st century. Giftedness and Talent in the 21st Century (pp. 3-14). SensePublishers.
Augustine, N. R. (2007). Rising above the gathering storm: Energizing and employing America for a brighter economic future. National Academies Press.
Boyt, T. E., Lusch, R. F. & Naylor, G. (2001) The role of professionalism in determining job satisfaction in professional services: a study of marketing researchers. Journal of Service Research, 3(4), 321–330.
Brehm, B., Breen, P., Brown, B., Long, L., Smith, R., Wall, A., & Warren, N.S. (2006). Instructional design and assessment. An interdisciplinary approach to introducing professionalism. American Journal of Pharmaceutical Education, 70(4), 1-5.
Broto, V. C., Gislason, M., & Ehlers, M. H. (2009). Practising interdisciplinarity in the interplay between disciplines: experiences of established researchers. Environmental Science & Policy, 12(7), 922-933.
Bryman, A., & Cramer, D. (1997). Quantitative data analysis with SPSS for Windows: A guide for social scientists. Routledge.
Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), 30-35.
Carnevale, A. P., Smith, N., & Strohl, J. (2010). Help wanted: Projections of jobs and education requirements through 2018. Georgetown University Center on Education and the Workforce.
Dai, D. Y. (2016). Envisioning a New Century of Gifted Education. In: Ambrose, D., Sternberg, R. J. (eds) Giftedness and talent in the 21st century. Advances in creativity and giftedness (pp. 45-63). SensePublishers.
Dalkey, N. C. (1969). The Delphi method: An experimental study of group opinion. Rand Corporation.
Davalos, R. A., & Haensly, P. A. (1997). After the dust has settled: Youth reflect on their high school mentored research experience. Roeper Review, 19(4), 204-207.
Delbecq, A. L., Van de Ven, A. H., & Gustafson, D. H. (1975). Group techniques for program planning: A guide to nominal group and Delphi processes. Scott, Foresman.
Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D. R. (2007). Grit: Perseverance and passion for long-term goals. Journal of Personality and Social Psychology, 92(6), 1087–1101.
Erdogan, N. & Stuessy, C. L. (2015). Modeling successful STEM high schools in the United States: An ecology framework. International Journal of Education in Mathematics, Science and Technology, 3(1), 77-92.
Gallagher, J. J. (2002). Gifted education in the 21st century. Gifted Education International, 16(2), 100-110.
Gardner, D. P. (1983). A nation at risk. Washington, DC: The National Commission on Excellence in Education, US Department of Education.
Han, H. J., & Shim, K. C. (2019). Development of an engineering design process-based teaching and learning model for scientifically gifted students at the Science Education Institute for the Gifted in South Korea. Asia-Pacific Science Education, 5(1), 1-18.
Harlen, W. (2015). Working with big ideas of science education. Science Education Programme of IAP.
Hasson, F., Keeney, S., & McKenna, H. (2000). Research guidelines for the Delphi survey technique. Journal of Advanced Nursing, 32(4), 1008-1015.
Hutchinson, D., & Warshaw, S. (2011). STEM leaders roundtable: Part I—Research and the curriculum. NCSSSMST Journal, 16(2), 34–36.
Kanli & Özyaprak, M. (2016). Stem education for gifted and talented students in Turkey. Journal of Gifted Education Research, 3(2), 1-10.
Korea Educational Development Institute (2011). 21세기 창의적 인재 양성을 위한 교육의 미래전략 연구. 연구보고서.
Korean Ministry of Education, Science and Technology. (2011). The second basic plan to foster and support the human resources in science and technology. MEST.
Korean Science Academy (n.d.). Education information. Retrieved from http://ksa.hs.kr.
Krajcik, J., McNeill, K., L., & Reiser, B., J. (2008). Learning-goals-driven design model: Developing curriculum materials that align with national standards and incorporate project-based pedagogy. Science Education, 92(1), 1–32.
Kyong, M. C. (2014). Opportunities to Explore for Gifted STEM Students in Korea: From Admissions Criteria to Curriculum. Theory Into Practice, 53(1), 25-32.
LaForce, M., Noble, E., King, H., Century, J., Blackwell, C., Holt, S., & Loo, S. (2016). The eight essential elements of inclusive STEM high schools. International Journal of STEM Education, 3(1), 21.
Lam, J. C., Walker, R. M., & Hills, P. (2014). Interdisciplinarity in sustainability studies: a review. Sustainable Development, 22(3), 158-176.
Lee, J., Kang, B., & Lee, D. (2016). Law for gifted and talented education in South Korea: its development, issues, and prospects. Turkish Journal of Giftedness and Education, 6(1), 14–23.
Lee, K. S., & Kim, K. (2012). A study on the education of creative engineering design methodology. Journal of Engineering Education Research, 15(4), 94–100.
Lee, M. H., Chai, C. S., & Hong, H. Y. (2019). STEM education in asia pacific:Challenges and development. Asia-Pacific Education Research, 28(1), 1–4.
Lundgren, D. D., Laugen, R. C., Lindeman, C. A., Shapiro, M. J., & Thomas, J. J. (2011). Schools like ours realizing our STEM future. NCSSSMST
Martin, M. O., Mullis, I. V., & Foy, P. (2008). TIMSS 2007 international mathematics report: Findings from IEA's Trends in International Mathematics and Science Study at the fourth and eighth grades. Chestnut Hill, MA.
Massachusetts Department of Education. (2006). Massachusetts science and technology engineering curriculum framework. Malden, MA: Department of Elementary and Secondary Education.
Mcdonald, C. V. (2016). STEM Education: A review of the contribution of the disciplines of science, technology, engineering and mathematics. Science Education International, 27(4), 530-569.
McKenna, H. P. (1994). The Delphi technique: a worthwhile research approach for nursing?. Journal of Advanced Nursing, 19(6), 1221-1225.
Meyrick, K. M. (2011). How STEM education improves student learning. Meridian K-12 School Computer Technologies Journal, 14(1), 1–6.
Ministry of National Education. (2007). Regulations of science and art Centers. Ministry of National Education.
Morris, J., Slater, E., Fitzgerald, M. T., Lummis, G. W., & Van-Etten, E. (2019). Using local rural knowledge to enhance STEM learning for gifted and talented students in Australia. Research in Science Education, 51(1), 1-19.
Morrison, J., Roth, M. A., & French, B. (2015). Identifying key components of teaching and learning in a STEM school. School Science and Mathematics, 115(5), 244-255.
National Academy of Education. (2014). STEM Integration in K-12 Education: Status, Prospects, and an Agenda for Research. The National Academies press.
National Consortium Specialized Secondary Schools of Mathematics, Science, and Technology. (2013). Mission, vision, beliefs, strategies. Retrieved from http://www.ncsssmst.org/about-ncsssmst/about-us.
National Research Council. (1996). National science education standards: Observe, interact, change, learn. National Academies Press.
National Research Council. (2002). Learning and understanding: Improving advanced study of mathematics and science in U.S. high schools. National Academy Press.
National Research Council. (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering, and mathematics. National Academics Press.
Nikitina, S. (2006). Three strategies for interdisciplinary teaching: Contextualizing, conceptualizing, and problem-centering. Journal of Curriculum Studies, 38(3), 251- 271.
Okulu, H. Z., Unver, A. O., & Arabacioglu, S. (2019). MUBEM & SAC: STEM Based Science and Nature Camp. Journal of Education in Science, Environment and Health, 5(2), 266-282.
Olszewski-Kubilius, P. (2009). Special schools and other options for gifted STEM Students. Roeper Review, 32(1), 61-70.
Özçelik, A., & Akgündüz, D. (2018). Evaluation of gifted/talented students’ out-of-school STEM education. Trakya University Journal of Education Faculty, 8(2), 334-351.
Peters-Burton, E. E., Lynch, S., J., Behrend, T., S., & Means, B., B. (2014). Inclusive STEM high school design: 10 critical components. Theory Into Practice, 53(1), 64–71.
Pfeiffer, S. I., Overstreet, J. M., & Park, A. (2009). The state of science and mathematics education in state-supported residential academies: A nationwide survey. Roeper Review, 32(1), 25-31.
Pill, J. (1971). The Delphi method: substance, context, a critique and an annotated bibliography. Socio-economic Planning Sciences, 5(1), 57-71.
Renzulli, J. (2000). One way to organize exploratory curriculum: Academies of inquiry and talent development. Middle School Journal, 32(2), 5-14.
Rosenthal, D. B. (1989). Two approaches to STS education. Science Education, 73, 581-589.
Ryu, J., Lee, Y., Kim, Y., Goundar, P., Lee, J., & Jung, J. Y. (2021). STEAM in gifted education in Korea. In: Smith, S. R. (Eds.), Handbook of Giftedness and Talent Development in the Asia-Pacific (pp. 787-808). Springer.
Sak, U. (2010). International perspectives on education for gifted students : Turkey. Curriculum Development and Teaching Strategies for Gifted Learners (3rd ed.,pp. 432-441).
Sak, U. (2011). An overview of the social validity of the Education Programs for Talented Students Model (EPTS). Education and Science, 36, 213-229.
Sak, U. (2012). Gifted and Talented: Characteristics, identification, education. Vize Yayıncılık.
Sak, U. (2013). Education programs for talented students model (EPTS) and its effectiveness on gifted students' mathematical creativity. Education and Science, 38(169), 51-61.
Sak, U., & Karabacak, F. (2010). What research says about the Education Programs for Talented Students (EPTS). 12th ECHA Conference, Paris, France.
Sanders, M. (2009). Stem, stem education, stem mania. The Technology Teacher, 68(4), 20–26.
Sayler, M. F. (2006). Special schools for the gifted and talented. In F. A. Dixon & S. M. Moon (Eds.), The handbook of secondary gifted education (pp. 547-559). Prufrock.
Sen, C., Ay, Z. S., & Kiray, S. A. (2021). Computational thinking skills of gifted and talented students in integrated STEM activities based on the engineering design process: The case of robotics and 3D robot modeling. Thinking Skills and Creativity, 42, 100931.
Seo, H. A., Kwak, Y. S., Jung, H. C., & Son, J. W. (2007). Teachers' perceptions to management of science high schools. Journal of the Society for the International Gifted in Science, 1, 125-134.
Shaughnessy, M. F., & Sak, U. (2015). A reflective conversation with Ugur Sak: Gifted education in Turkey. Gifted Education International, 31(1), 54-62.
Siegle, D., Rubenstein, L. D., & Mitchell, M. S. (2014). Honors students’ perceptions of their high school experiences: the influence of teachers on student motivation. Gifted Child Quarterly, 58(1), 35–50.
Stanley, J. C. (1987). State residential high schools for mathematically talented youth. The Phi Delta Kappan, 68(10), 770-773.
Stephens, K. R. (1999). Residential math and science high schools: A closer look. Journal of Secondary Gifted Education, 10(2), 85-92.
Subotnik, R. F., Tai, R. H., Rickoff, R., & Almarode, J. (2009). Specialized public high schools of science, mathematics, and technology and the STEM pipeline: What do we know now and what will we know in 5 years? Roeper Review, 32(1), 7–16.
Tang, W. T., & Kaijie, J. K. (2014) Challenges in STEM Teaching: Implication for Preservice and Inservice Teacher Education Program. Theory Into Practice, 53(1), 18-24.
The White House. (2013). Preparing a 21st century workforce-science, technology, engineering, and mathematics (STEM) education in the 2014 budget. Preparing a 21st Century Workforce. The White House.
Thomas, J. A. (2000). First year findings: NCSSSMST longitudinal study of gifted students. NCSSSMST Journal, 5(2), 4–6.
Thomas, J., & Williams, C. (2009). The history of specialized STEM schools and the formation and role of the NCSSSMST. Roeper Review, 32(1), 17-24.
Tofel-Grehl, C., & Callahan, C. M. (2014). STEM high school communities: Common and differing features. Journal of Advanced Academics, 25(3), 237–271.
Tofel-Grehl, C., & Callahan, C. M.(2016). Variations in the intensity of specialized science, technology, engineering, and mathematics (STEM) high schools. Journal of STEM Teacher Education, 51(1), 33–56.
Torkar, G., Avsec, S., Čepič, M., Ferk Savec, V., & Juriševič, M. (2018). Science and technology education in slovenian compulsory basic school: Possibilities for gifted education. Roeper Review, 40(2), 139-150.
Tsai, H. Y., Chung, C. C., & Lou, S. J. (2017). Construction and development of iSTEM learning model. Eurasia Journal of Mathematics, Science and Technology Education, 14(1), 15-32.
Tsai, H., Chung, C., & Lou, S. (2018). Construction and development of iSTEM learning model. Eurasia Journal of Mathematics, Science and Technology Education, 14(1), 15-32.
U. S. Department of Education. (2013). Science, technology, engineering and math: education for global leadership. Routledge.
Udall, A. J., & Daniels, J. E. (1991). Creating the thoughtful classroom. Zephyr Press.
Ulger, B. B., & Çepni, S. (2020). Gifted Education and STEM: A Thematic Review. Journal of Turkish Science Education, 17(3), 443-466.
Vernon, W. (2009). The Delphi technique: a review. International Journal of Therapy and Rehabilitation, 16(2), 69-76.
Wang, H., Moore, T., Roehrig, G., & Park, M. (2011). STEM integration: Teacher perceptions and practice. Journal of Pre-College Engineering Education Research, 1(2), 1-13.
Yildirim, B. (2016). An analyses and meta-synthesis of research on STEM education. Journal of Education and Practice, 7(34), 23–33.
Yu, H. P., Chang, C. C., & Jen, E. (2017). Policy and practice in science education for the gifted in Taiwan. Policy and Practice in Science Education for the Gifted: Approaches from Diverse National Contexts. (pp. 92-102). Taylor and Francis.
안혜란 & 유미현. (2015). 영재교육에서의 융합인재교육(STEAM) 연구 동향 분석. 영재교육연구, 25(3), 401-420.