簡易檢索 / 詳目顯示

研究生: 陳昱文
Yu-Wen Chen
論文名稱: 臨場監控雷射鍍膜法合成高介電常數薄膜電性、光性、微波特性研究
Study on electrical and optical characteristics as well as microwave properties for high dielectric constant films by in-situ diagnostic pulsed laser deposition
指導教授: 鄭秀鳳
Cheng, Hsiu-Fung
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 168
中文關鍵詞: 脈衝雷射鍍膜法可見光發射光譜儀介電常數
英文關鍵詞: Pulsed laser deposition, Optical Emission Spectroscope, dielectric constant
論文種類: 學術論文
相關次數: 點閱:242下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用脈衝雷射鍍膜法(Pulsed Laser Deposition, PLD)合成PBZNZT x(0.94Pb(Zn1/3Nb2/3)O3+0.06BaTiO3)+(1–x)((1–y)PbZrO3+ yPbTiO3)( x=0.6, y=0.52 )薄膜。首先利用光多頻分析儀亦即可見光發射光譜儀(Optical Multichannel Analyzer, OMA, i.e., Optical Emission Spectroscope, OES)臨場監控並擷取分析靶材的電漿物種發射光譜,俾了解品管PLD適當的鍍膜參數條件,据以獲得BMT當緩衝層,在鍍膜溫度T= 400 ℃,雷射能量通量密度E= 1.50 J/cm2,雷射鍍膜重覆率R.R.= 5 Hz,氧分壓PO2 (PBZNZT)=0.50 mbar、PO2 (BMT)=0.90 mbar,PBZNZT、BMT靶材分別與基板間距為4.5 cm、4.0 cm,鍍膜時間t=30 min (PBZNZT)、15 s(BMT),成功鍍得鈣鈦礦結構PBZNZT/BMT/MgO薄膜。再進一步量測分析所有薄膜的電性、光性、微波特性。
    電性方面,雷射鍍PBZNZT薄膜的最佳矯頑電場Ec 值約522.32 kV/cm,最佳殘留電極化Pr值約25.99 C/cm2,且薄膜在頻率2 kHz的最佳低頻介電常數(εr) =737。
    光性方面,PBZNZT/BMT/MgO薄膜晶粒大小均勻,約在50–100 nm,膜厚(d) =2193.37 nm,能隙(Eg)=0.85 eV,折射率(n)=1.9020,吸收係數(k)=0.00428 nm-1,最佳光頻介電常數(εr) =3.6153。
    微波特性方面,PBZNZT/BMT/MgO薄膜的最佳微波介電常數(εr)約177.7,微波品質因子(Q)約10,080。
    藉雷射鍍膜法研製具高介電常數PBZNZT薄膜,除可提供相關學術研究參考外,並可促成高介電常數薄膜之輕薄短小元件應用早日來臨。

    In this study, the PBZNZT [x(0.94Pb(Zn1/3Nb2/3)O3+0.06BaTiO3) +(1–x)((1–y)PbZrO3+yPbTiO3)( x=0.6, y=0.52 )] thin films have been synthesized by using pulsed laser deposition (PLD) technique. In order to understand and control the optimum PLD parameters, Optical Multichannel Analyzer (OMA) i.e., Optical Emission Spectroscope (OES) was firstly used to in-situ diagnostically take and analyze the optical emitted spectra of plasma species ablated from targets. Thus the as-deposited PBZNZT/BMT/MgO films with perovskite structure were successfully grown, using following PLD parameters: BMT [Ba(Mg1/3Ta2/3)O3] buffer layer, deposition temperature T= 400 ℃, laser fluence E= 1.50 J/cm2, PLD repetition rate R.R.= 5 Hz, oxygen pressure PO2 (PBZNZT)=0.50 mbar, PO2 (BMT)=0.90 mbar, distances between targets and substrates 4.5 cm(PBZNZT) and 4.0 cm(BMT), deposition time t (PBZNZT)=30 min and t (BMT)=15 s. The electrical, optical and microwave properties of the films were further measured and investigated.
    In electrical properties, pulsed laser deposited PBZNZT films have the optimized values of coercive electric field (Ec) = 522.32 kV/cm and remanent electric polarization (Pr) = 25.99 C/cm2, respectively. The maximum value of dielectric constant is about 737.
    In optical characteristics, PBZNZT/BMT/MgO films possess uniformly distributed grain sizes=50–100 nm, film thickness (d) =2193.37 nm, energy gap (Eg) =0.85 eV, index of refraction (n) =1.9020, optical absorption coefficient (k) =0.00428 nm-1. The optical dielectric constant (εr) =3.6153.
    In microwave properties, PBZNZT/BMT/MgO films have optimized dielectric constant (εr) and quality factor (Q) respectively around 177.7 and 10,080.
    Through pulsed laser deposition method, the fabricated PBZNZT thin films not only can be used to assist the related academic research, but also can be utilized to promote the light-thin-short-small device applications.

    中文摘要…………………………………………………………………I 英文摘要……………………………………………………II 誌謝……………………………………………………………………………III 目錄……………………………………………………………………………IV 圖索引…………………………………………………………………………VI 表索引………………………………………………………………………………X 第一章 緒論…………………………………………………………………1 1.1前言………………………………………………………………………1 1.2複合弛緩性鐵電材料簡介………………………………………………5 1.3複合弛緩性鐵電材料的特徵………………………………………………6 1.4複合弛緩性鐵電與正常鐵電比較…………………………………………9 1.5 Pb(Mg1/3Nb2/3)O3(簡稱PMN)的基本性質…………………………11 1.6 Ba(Mg1/3Ta2/3)O3緩衝材料簡介…………………………………16 1.7不同頻段的介電極化機制………………………………………………21 1.8微波介電陶瓷………………………………………………………………26 第二章 實驗方法……………………………………………………………29 2.1 塊材與薄膜製程…………………………………………………………29 2.1.1 Ba(Mg1/3Ta2/3)O3靶材製作……………………………………29 2.1.2 x(0.94Pb(Zn1/3Nb2/3)O3+0.06BaTiO3)+(1–x)((1–y)PbZrO3+ yPbTiO3) ( 其 中 x=0.6, y=0.52 ) (簡稱PBZNZT)靶材製作…………………………31 2.1.3準分子雷射製程………………………………………………………34 2.1.4 雷射剝鍍製程……………………………………………………………35 2.1.5脈衝雷射鍍膜…………………………………………………………40 2.2材料XRD晶相鑑定與SEM微結構觀察………………………………46 2.2.1材料晶體結構之分析(X-Ray Diffraction, XRD)……………………………46 2.2.2材料微結構之觀察(Scanning Electron Microscope, SEM)…………………46 2.3 可見光發射光譜及電性、光性、微波特性…………………………46 2.3.1可見光發射光譜(Optical Emission Spectra, OES)……46 2.3.2鐵電陶瓷材料特性…………………………………………………51 2.3.3鐵電(P-E)特性……………………………………………………52 2.3.4電性…………………………………………………………………53 2.3.5光性…………………………………………………………………53 2.3.6微波近場掃描顯微術(Scanning Evanescent Microwave Microscopy)………………………………………………………………56 第三章 實驗結果與討論……………………………………………………58 3.1雷射剝鍍製程法之可見光發射光譜……………………………………58 3.1.1固定相同雷射能量通量密度、鍍膜重覆率、氧分壓,改變不同靶材之光譜………………………………………………………………………………58 3.2材料XRD晶相鑑定與SEM微結構觀察………………………………78 3.3 高介電常數PBZNZT薄膜電性.……………………………………102 3.3.1高介電常數PBZNZT薄膜鐵電特性………………………………102 3.3.2高介電常數PBZNZT薄膜低頻電性………………………………109 3.4 高介電常數PBZNZT薄膜光性……………………………………………114 3.4.1光學頻段介電特性………………………………………………………114 3.5 高介電常數PBZNZT薄膜微波介電特性…………………………………126 3.5.1微波近場掃描顯微術量測分析………………………………………126 第四章 總結與展望………………………………………………………139 4.1 結論………………………………………………………………………139 4.2 總結………………………………………………………………………144 4.3 未來展望…………………………………………………………………144 參考文獻…………………………………………………………………………146 次研究 S1 微波電漿輔助化學汽相沈積法成長奈米碳管與其受照光電子場發射研究……154 S2 利用微波近場顯微探針研究具場發射鑽石薄膜的影像與介電特性……………158 S3 極具薄膜電極應用潛力的奈米碳管與鑽石薄膜電漿發射光譜物種研究………161 S4 傳統與微波燒結介電質對微波與交流電訊號響應的電性比較…………………165

    [1]. L. H. Parker and A. F. Tasch,“ Ferroelectric Materials for 64 Mb and 256 Mb DRAMS, ” IEEE Circuits and Devices Magazine, Vol. 6, No. 1,17-26 (1990).
    [2]. Y. Yamashita,“ PZN-Based Relaxors for MLCCs, ” American Ceramic Society Bulletin, Vol. 73, No. 8, 74-80 (1994).
    [3]. K. Yao, K. Uchino, Y. Xu, S. Dong and L. C. Lim,“ Compact Piezoelectric Stacked Actuators for High Power Applications, ” IEEE Transactions on Ultrasonic, Ferroelectrics, and Frequency Control, Vol. 47, No. 4, 819-825 (2000).
    [4]. H. Kawai, Y. Sasaki, T. Inoue, T. Inoi and S. Takahashi,“ High Power Transformer Employing Piezoelectric Ceramics, ” Jpn. J. Appl. Phys., Vol. 35 part 1. No. 9B, 5015-5017 (1996).
    [5]. W. Y. Pant, S. Sunt and B. A. Tuttle,“ Electromechanical and Dielectric Instability Induced by Electric Field Cycling in Ferroelectric Ceramic Actuators, ” Smart Mater. Struct., Vol. 1, No. 4, 286-293 (1992).
    [6]. K. Uchino,“ Piezoelectric Ultrasonic Motors: Overview, ” Smart Mater. Struct., Vol. 7, No. 3, 273-285 (1998).
    [7]. Y. Xu, Ferroelectric Materials and Their Application, North-Holland, New York, 101-159 (1991).
    [8]. R. D. Klissurska, K. G. Brooks, I. M. Reancy and C. Pawlaczyk,“ Effect of Nb Doping on the Microstructure of Sol-Gel-Derived PZT Thin Films, ” J. Am. Ceram. Soc., Vol. 78, No. 6, 1513-1520 (1995).
    [9]. D. Dimos, R. W. Schwartz and S. J. Lockwood,“ Control of Leakage Resistance in Pb(Zr,Ti)O3 Thin Films by Donor Doping, ” J. Am. Ceram. Soc., Vol. 77, No. 11, 3000-3005 (1994).
    [10]. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya and N. N. Kainik, “ New Ferroelectrics of Complex Composition. IV, ” Soviet Physics-Solid State, Vol. 2 No. 11, 2651-2654 (1961).
    [11]. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya and S. B. Popov, “ Ferroelectrics with Diffuse Phase Transitions, ” Soviet Physics-Solid State, Vol. 2 No. 11, 2584-2594 (1961).
    [12]. Y. Sato, H. Kanai and Y. Yamashita,“ Effects of Silver and Palladium Doping on the Dielectric Properties of 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 Ceramic, ” J. Am. Ceram. Soc., Vol. 79, No. 1, 261-265 (1996).
    [13]. Y. Yamashita, Y. Hosono and T. Ichinose,“ Phase Stability, Dielectric and Piezoelectric Properties of the Pb(Sc1/2Nb1/2)O3- Pb(Zn1/3Nb2/3)O3-PbTiO3 Ternary Ceramic Materials, ” Jpn. J. Appl. Phys., Vol. 36, Part 1, No. 3A, 1141-1145 (1997).
    [14]. S. K. Ang, J. Wang, D. Wan and J. Xue,“ Mechanical Activation-Assisted Synthesis of Pb(Fe2/3W1/3)O3, ” J. Am. Ceram. Soc., Vol. 83, No. 7, 1575-1580 (2000).
    [15]. S. E. Park and T. R. Shrout,“ Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystal, ” J. Appl. Phys., Vol. 82, No. 4, 1804-1811 (1997).
    [16]. J. Kuwata, K. Uchino and S. Nomura,“ Diffused Phase Transition in Lead Zinc Niobate, ” Ferroelectrics, Vol. 22, 863-867 (1979).
    [17]. Y. Hosono, K. Harada, Y. Yamashita, M. Dong and Z. G. Ye,“ Growth, Electric and Thermal Properties of Lead Scandium Niobate-Lead Magnesium Niobate-Lead Titanate Ternary Single Crystal, ” Jpn. J. Appl. Phys., Vol. 39, Part 1, No. 9B, 5589-5592 (2000).
    [18]. M. L. Mulvihill, S. E. Park, G. Risch, Z. Li and K. Uchino,“ The Role of Processing Variables in the Flux Growth of Lead Zinc Niobate-Lead Titanate Relaxor Ferroelectric Single Crystals, ” Jpn. J. Appl. Phys., Vol. 35, Part 1, No. 7, 3984-3990 (1996).
    [19]. Y. Matsuo, H. Sasaki, S. Hayakawa, F. Kanamaru and M. Koizumi, “ High-Pressure Synthesis of Perovskite-Type Pb(Zn1/3Nb2/3)O3, ” J. Am. Ceram. Soc.-Discussions and Note, Vol. 52, No. 9, 516-517 (1969).
    [20]. A. Halliyal, U. Kumar, R. E. Newnham and L. E. Cross,“ Dielectric and Ferroelectric Properties of Ceramics in the Pb(Zn1/3Nb2/3)O3- BaTiO3-PbTiO3, ” . J. Am. Ceram. Soc., Vol. 70, No. 2, 119-124 (1987).
    [21]. A. Halliyal, U. Kumar, R. E. Newnham and L. E. Cross,“ Stabilization of the Perovskite Phase and Dielectric Properties of Ceramics in the Pb(Zn1/3Nb2/3)O3-BaTiO3, ” Am. Ceram. Soc. Bull., Vol. 66, No. 4, 671-676 (1987).
    [22]. J. R. Belsick, A. Halliyal, U. Kumar and R. E. Newnham,“ Phase Relations and Dielectric Ptoperties of Ceramics in the System Pb(Zn1/3Nb2/3)O3- SrTiO3-PbTiO3, ” Am. Ceram. Soc. Bull., Vol. 66, No. 4, 664-667 (1987).
    [23]. K. K. Deb, M. D. Hill, R. S. Roth and J. F. Kelly,“ Dielectric and Pyroelectric Properties of Doped Lead Zinc Niobate (PZN) Ceramic Materials, ” Ceramic Bulletin, Vol. 71, No. 3, 349-354 (1992).
    [24]. T. Takenaka, A. S. Bhalla and L. E. Cross,“ Dielectric, Piezoelectric and pyroelectric Properties of Lead Zirconate-Lead Zinc Niobate Ceramics, ” J. Am. Ceram. Soc.-Discussions and Note, Vol. 72, No. 6, 1016-1023 (1989).
    [25]. D. F. Bahr, J. S. Robach, J. S. Wright, L. F. Francis and W. W. Gerberich,“ Mechanical Properties of PZT Thin Films for MEMS Applications, ” Materials Science and Engineering: A, Vol. 259, No. 6, 126-131 (1999).
    [26]. Y. C. Lee and S. H. Kuo,“ A New Point-Source/Point-Receiver Acoustic Transducer for Surface Wave Measurement, ” Sensors and Actuators A: Physical A, Vol. 94, No. 1, 129-135 (2001).
    [27]. C. Campbell,“ Applications of Surface Acoustic and Shallow Bulk Acoustic Wave Devices, ” Proceedings of IEEE, Vol. 77, No. 10, 1453-1484 (1989).
    [28]. P. Muralt,“ PZT Thin Films for Microsensors and Actuators: Where Do We Stand?, ” Ultrasonics, Ferroelectrics and Frequency Control, Proceedings of IEEE, Vol. 47, No. 4, 903-915 (2000).
    [29]. B. Piekarski, D. D. Voe, M. Dubey, R. Kaul, J. Conrad and R. Zeto,“ Surface Micromachined Piezoelectric Resonant Beam Filters, ” Sensors and Actuators A, Vol. 91, No. 3,313-320 (2001).
    [30]. T. Imai, M. Okuyama and Y. Hamakawa,“ PbTiO3 Thin Films Deposited by Laser Ablation, ” Jpn. J. Appl. Phys., Vol. 30, No. 9B, 2163-2166 (1991).
    [31]. S. Otsubo, T. Maeda, T. Minamikawa, Y. Yonezawa, A. Morimoto and T. Shimizu,“ Preparation of Pb(Zn0.52Ti0.48)O3 Films by Laser Ablation, ” Jpn. J. Appl. Phys., Vol. 29, Part 2, No. 1, L133-L136 (1990).
    [32]. H. Qian and L. A. Bursill,“ Phenomenological Theory of the Dielectric Response of Lead Magnesium Niobate and Lead Scandium Tantalate, ” Int. J. Mod. Phys. B, Vol. 10, No. 16, 2007-2025 (1996).
    [33]. 張國祥, 以簡化Columbite法製作0.08BPZN弛緩性鐵電陶瓷, Ch.2, 崑山科技大學電子工程系四技部專題研究報告(2005).
    [34]. S. L. Swartz and T. R. Shrout,“ Fabrication of Perovskite Magnesium Niobate, ” Mater. Res. Bull., Vol. 17, No. 10, 1245-1250 (1982).
    [35]. Y. C. Liou, L. Wu and S. S. Liou,“ Pb(Mg1/3Nb2/3)O3 Ceramics Produced by Modified Two-Stage Calcination Process, ” Jpn. J. Appl. Phys., Vol. 33, part 2, No. 9B, L1320-L1322 (1994).
    [36]. L. E. Cross, “Relaxor Ferroelectrics: An Overview, ” Ferroelectrics, Vol. 151, 305-320 (1994).
    [37]. K. M. Lee and H. M. Jang,“ A New Mechanism of Nonstoichiometric 1: Short-Range Ordering in NiO-Doped Pb(Mg1/3Nb2/3)O3 Relaxor Ferroelectrics, ” J. Am. Ceram. Soc., Vol. 81, No. 10, 2586-2596 (1998).
    [38]. 藍文安, 添加劑對鋇鎂鉭微波介電陶瓷之影響, Ch.2, 國立清華大學材料科學工程學系碩士論文(2001).
    [39]. F. Galasso, J. R. Barrante and L. Katz,“ Alkaline Earth-Tantalum-Oxygen Phases Including the Crystal Structure of an Ordered Perovskite Compound, Ba3SrTa2O9, ” J. Am. Chem. Soc., Vol. 83, 2830-2832 (1960).
    [40]. C. Munakata, K. Yagi, T. Warabisako, M. Nanba and S. Matsubara,“ Observation of p-n Junctions with a Flying-Spot Scanner Using a Chopped Photon Beam, ” Jpn. J. Appl. Phys., Vol. 21, Part 1, No. 4, 624-632 (1982).
    [41]. F. Galasso and J. Pyle,“ Ordering in Compounds of the A(B0.33Ta0.67)O3 Type, ” Inorg. Chem., Vol. 2, No. 3, 482-484 (1963).
    [42]. P. C. Joshi and S. B. Desu,“ Properties of Ba(Mg1/3Ta2/3)O3 Thin Films Prepared by Metalorganic Solution Deposition Technique for Microwave Applications, ” Appl. Phys. Lett., Vol. 73, No. 8, 1080-1082 (1998).
    [43]. 陳宜君, 利用全頻譜與掃描微探顯微影術研究微波材料的介電機制, Ch. 2 & Ch.5, 國立臺灣師範大學物理研究所博士論文(2003).
    [44]. A. V. Hipple, Dielectrics and Waves, Atrech House, London, 1-86 (1996).
    [45]. G. Burns, Solid State Physics, Academic press, Florida, 450-486 (1985).
    [46]. K. J. Button,“ Microwave Ferrite Devices: The First Ten Years, ” IEEE Trans. Microw. Theo. Tech., Vol. MTT-32, No. 9, 1088-1096 (1984).
    [47]. M. E. Hines,“ The Virtues of Nonlinearity-Detection, Frequency Conversion, Parametric Amplification and Harmonic Generation, ” IEEE Trans. Microw. Theo. Tech., Vol. MTT-32, No. 9, 1097-1104 (1984).
    [48]. J. F. White,“ Origins of High-Power Diode Switching, ” IEEE Trans. Microw. Theo. Tech.,. Vol. MTT-32, No. 9, 1105-1117 (1984).
    [49]. P. Greiling,“ The Historical Development of GaAs FET Digital IC Technology, ” IEEE Trans. Microw. Theo. Tech., Vol. MTT-32, No. 9, 1144-1156 (1984).
    [50]. D. N. McQuiddy, Jr., J. W. Wassel, J. B. Lagrange and W. R. Wisseman,“ Monolithic Microwave Integrated Circuits: A Historical Perspective, ” IEEE Trans. Microw. Theo. Tech., Vol. MTT-32, No. 9, 997-1008 (1984).
    [51]. D. M. Pozar, Microwave Engineering, John Wiley & Sons, INC., New York, 330-383 (1990).
    [52]. J. H. Sohn,“ Microwave Dielectric Characteristics of Ilmenite-Type Titanates, ” Jpn. J. Appl. Phys., Vol. 33, Part 1, No. 9B, 5466-5470 (1994).
    [53]. S. B. Desu and H. M. O’Bryan,“ Microwave Loss Quality of BaZn1/3Ta2/3O3 Ceramics, ” J. Am. Ceram. Soc., Vol. 68, No. 10, 546-551 (1985).
    [54]. S. Nomura, K. Toyama and K. Kaneta,“ Ba(Mg1/3Ta2/3)O3 Ceramics with Temperature Stable High Dielectric Constant and Low Microwave Loss, ” Jpn. J. Appl. Phys., Vol. 21, Part 2, No. 10, L624-L626 (1982).
    [55]. R. Guo, A. S. Shalla, and L. E. Cross,“ Ba(Mg1/3Ta2/3)O3 Single Crystal Fiber Grown by the Laser Heated Pedestal Growth Technique, ” J. Appl. Phys., Vol. 75, No. 9, 4704-4708 (1994).
    [56]. S. G. Chen,“ Microwave Dielectric Properties of Doped BaTi4O9,” J. Am. Ceram. Soc., Vol. 78, No. 8, 1894-1898 (1991).
    [57]. G. H. Jonker and W. Kwestroo,“ The Ternary Systems BaO-TiO2-SnO2 and BaO-TiO2-ZrO2, ” J. Am. Ceram. Soc., Vol. 41, No. 10, 390-394 (1958).
    [58]. H. M. O’Bryan,“ Phase Equilibrium in the TiO2-Rich Region of the System BaO-TiO2, ” J. Am. Ceram. Soc., Vol. 57, No. 12, 522-526 (1974).
    [59]. R. Chirtoffersen,“ Effect of Sn Substitution on Cation Ordering in Zr1-xSnxTiO4 Microwave Dielectric Ceramics, ” J. Am. Ceram. Soc., Vol. 77, No. 6, 1441-1450 (1994).
    [60]. K. Wakino,“ Microwave Characteristics of (Zr,Sn)TiO4 and BaO-PbO- Nb2O3-TiO2 Dielectric Resonators, ” J. Am. Ceram. Soc., Vol. 67, No. 4, 278-281 (1984).
    [61]. A. Yamada,“ The Effect of Mn Addition on Dielectric Properities and Microstructure of BaO-Nd2O3-TiO2 Ceramics, ” Jpn. J. Appl. Phys., Vol. 30, Part 1, No. 9B, 2350-2353 (1991).
    [62]. Donhang Liu and Xi Yao,“ Phase Structure and Dielectric Properties of Bi2O3-ZnO-Nb2O5 Based Dielectric Ceramics, ” J. Am. Ceram. Soc., Vol. 76, No. 8, 2129-2132 (1993).
    [63]. D. B. Chirsey, Pulsed Laser Deposition of Thin Film, Ch. 1~ Ch.13 (1994).
    [64]. M. Ohring, The Materials Science of Thin Films, Ch. 3 & Ch. 5 (1992).
    [65]. J. C. Miller, Laser Ablation and Deposition, Ch. 11 (1998).
    [66]. A. Grill, Cold Plasma in Materials Fabrication, Ch. 1 & Ch. 3, (1998).
    [67]. B. Chapman, ed., Glow Discharge Process, John Wiley & Sons., N. Y., Ch. 2, 46-56 (1980).
    [68]. J. L. Vossen and W. Kern, eds., Thin Film Processes, Academic press, N. Y., Part II, 24-31 (1978).
    [69]. M. J. Rand,“ Plasma-Promoted Deposition of Thin Inorganic Films, ” J.Vac. Sci. Technol., Vol. 16, No. 2, 420-427 (1979).
    [70]. J. W. Coburn and M. Chen, “ Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density”, J. Appl. Phys., Vol. 51, No. 6, 3134-3136 (1980).
    [71]. C. Barshilia, B. R. Mehta and V. D. Vanker, “ Optical emission spectroscopy during the bias-enhanced nucleation of diamond microcrystals by microwave plasma chemical vapor deposition process”, J. Mater. Res., Vol. 11, No. 11, 2852-2860 (1996).
    [72]. F. J. Kampas, “ An optical emission study of the glow-discharge deposition of hydrogenated amorphous silicon from argon-silane mixtures”, J. Appl. Phys., Vol. 54, No. 5, 2276-2280 (1983).
    [73]. W. L. Wiese and G. A. Martin: Physics Vade Mecum of AIP 50th Anniversary, ed. H. L. Anderson(American Institute of Physics), 100 (1981).
    [74]. J. F. Lee, J. F. Sears and D. L. Turcotte: Statistical Thermodynamics, eds. H. W. Emmons and B. Budiansky (Addison Wesley Philippines), 120 (1973).
    [75]. V. M. Donnelly,“ Plasma Electron Temperatures and Electron Energy Distributions Measured by Trace Rare Gases Optical Emission Spectroscopy, ” J. Phys. D, Vol. 37, No. 19, R217-R236 (2004).
    [76]. A. Qayyum, S. Zeb, M. A. Naveed, S. A. Ghauri, M. Zakaullah and A. Waheed,“ Diagnostics of Nitrogen Plasma by Trace Rare-Gas-Optical Emission Spectroscopy, ” J. Appl. Phys., Vol. 98, No. 10, 1033031-1033039 (2005).
    [77]. M. V. Malyshev and V. M. Donnelly, “ Trace rare gases optical emission spectroscopy: Nonintrusive method for measuring electron temperature in low-pressure, low-temperature plasma”, Phys. Rev. E, Vol. 60, No. 5, 6016-6029 (1999).
    [78]. B. A. Cruden and M. Meyyappan, “ Characterization of radio frequency carbon nanotube growth plasma by ultraviolet absorption and optical emission spectroscopy”, J. Appl. Phys., Vol. 97, 084311-1-084311-11 (2005).
    [79]. S. Akita, H. Ashihara and Y. Nakayama, “ Optical emission spectroscopy of arc flame plasma for generation of carbon nanotubes”, Jpn. J. Appl. Phys., Vol. 39, Part 1, No. 8, 4939-4944 (2000).
    [80]. G. Shirane, F. Jona and R. Pepinsky,“ Some Aspects of Ferroelectricity, ” IEEE Inter. Sympos. on Circuits and Systems Proceedings, Vol. 43, 1738-1793 (1955)
    [81]. Hsiu-Fung Cheng, Yi-Chun Chen and I-Nan Lin,“ Frequency Response of Microwave Dielectric Bi2(Zn1/3Nb2/3)2O7 Thin Films Laser Deposited on Indium-Tin Oxide Coated Glass, ” J. Appl. Phys., Vol. 87, No. 1, 479-483 (2000).
    [82]. H. C. Ling, M. F. Yan and W. W. Rhodes,“ High Dielectric Constant and Small Temperature Coefficient Bismuth-Based Dielectric Compositions, ” J. Mater. Res., Vol. 5, No. 8, 1752-1762 (1990).
    [83]. J. C. Nino, M. T. Lanagan, and C. A. Randall,“ Dielectric Relaxation in Bi2O3-ZnO-Nb2O5 Cubic Pyrochlore, ” J. Appl. Phys., Vol. 89, No. 8, 4512-4516 (2001).
    [84]. I. Levin, T. G. Amos, J. C. Nino, T. A. Vanderah, C. A. Randall, and M. T. Lanagan,“ Structural Study of An Unusual Cubic Pyrochlore Bi1.5Zn0.92Nb1.5O6.92, ” J. Solid State Chem., Vol. 168, 69-75 (2002).
    [85]. J. C. Nino, M. T. Lanagan, C. A. Randall and D. Kamba,“ Correlation Between Infrared Phonon Modes and Dielectric Relaxation in Bi2O3-ZnO-Nb2O5 Cubic Pyrochlore, ” Appl. Phys. Lett., Vol. 81, No. 23, 4404-4406 (2002).
    [86]. W. Ren, S. T. Mckinstry, C. A. Randall, and Tomas R. Shrout,“ Bismuth Zinc Niobate Pyrochlore Dielectric Thin Films for Capacitive Applications, ” J. Appl. Phys., Vol. 89, No. 1,767-774 (2001).
    [87]. S. Kamaba, V. Porokhonskyy, A. Pashkin, V. Bovtum, J. Petzelt, J. C. Nino, S. T. Mckinstry, M. T. Lanagan and C. A. Randall,“ Anomalous Broad Dielectric Relaxation in Bi1.5Zn1.0Nb1.5O7, ” Phys. Rev. B, Vol. 66, No. 5, 0541061-0541068 (2002).
    [88]. F. S. Galasso, Structure, Properties and Preparation of Perovskite-Type Compounds, Pergamon, Oxford, 13-15 (1969).
    [89]. H. Tamura, D. A. Sagala and K. Wakino,“ Lattice Vibrations of Ba(Zn1/3Ta2/3)O3 Crystal with Ordered Perovskite Structure, ” Jpn. J. Appl. Phys., Vol. 25, Part 1, No. 6, 787-791 (1986).
    [90]. I. G. Siny, R. W. Tao, R. S. Katiyar, R. A. Guo and A. S. Bhalla,“ Raman Spectroscopy of Mg-Ta Order-Disorder in Ba(Mg1/3Ta2/3)O3, ” J. Phys. Chem. Solid., Vol. 59, No. 2, 181-195 (1998).
    [91]. C. T. Chia, Y. C. Chen, H. F. Cheng and I. N. Lin,“ Correlation of Microwave Dielectric Properties and Spectroscopy of Ba(Mg⅓Ta⅔)O3-Ba(Mg⅓Nb⅔)O3 Ceramics: I. Raman, ” J. Appl. Phys., Vol. 94, No. 5, 3360-3364 (2003).
    [92]. H. Tamura, D. A. Sagala and K. Wakino,“ Infrared Reflection of Ba(Mg1/3Ta2/3)O3 Ceramics, ” J. Am. Ceram. Soc., Vol. 76, No. 10, 2433-2436 (1993).
    [93]. K. Tochi and N. Takeuchi,“ Lattice Vibration Modes of (1–x)Ba(Zn1/3Ta2/3)O3–xBaZrO3, ” J. Mater. Sci. Lett., Vol. 8, No. 10, 1144-1146 (1989).
    [94]. T. Nagai, M. Sugiyama, M. Sando and K. Nihara,“ Anomaly in the Infrared Active Phonon Modes and Its Relationship to the Dielectric Constant, ” Jpn. J. Appl. Phys., Vol. 35, Part 1, No. 9B, 5163-5167 (1996).
    [95]. K. Tochi and N. Takeuchi,“ Far-Infrared Reflection Spectra of Ba(Mn1/3Ta2/3)O3 Sintered in Nitrogen and in Air, ” J. Mater. Sci. Lett., Vol. 7, No. 10, 1080-1082 (1988).
    [96]. K. Tochi, N. Takeuchi and S. Emura,“ Two-Mode Behavior in Complex Perovskite Materials, ” J. Am. Ceram. Soc., Vol. 72, No. 1, 158-160 (1989).
    [97]. M. Sugiyama and T. Nagai,“ Anomaly of Dielectric Constant of (Ba1-xSrx)(Mg1/3Ta2/3)O3 Solid Solution and Its Relation to Structural Change, ” Jpn. J. Appl. Phys., Vol. 32, Part 1, No. 9B, 4360-4363 (1993).
    [98]. Yi-Chun Chen, Hsiu-Fung Cheng and I-Nan Lin,“ Electrical and Optical Properties of Microwave Dielectric Thin Films Prepared by Pulsed Laser Deposition, ” Integrated Ferroelectrics, Vol. 32, No. 1-4 33-43 (2001).
    [99]. C. Gao and X. D. Xiang,“ Quantitative Microwave Near-Field Microscopy of Dielectric Properties, ” Rev. Sci. Ins., Vol. 69, 3846-3851 (1998).
    [100]. NIST Atomic Spectra Database Version 3.1.2 web site: http://physics.nist.gov/PhysRefData/ASD/index.html
    [101]. H. F. Cheng,“ Spectroscopic Characteristics of Pb0.95La0.05(Zr1-yTiy)0.9875O3 Plasma and Growth Behavior of Thin Films by Pulsed Laser Deposition, ” J. Appl. Phys., Vol. 78, No. 7, 4633-4639 (1995).
    [102]. 朱英豪, Ba(Mg1/3Ta2/3)O3緩衝層利用於低溫成長Pb(Zr1-XTiX)O3薄膜之研究, Ch. 1 & Ch.2, 國立清華大學材料科學工程學系博士論文(2004).
    [103]. L.L. Sun, O.K. Tan, W.G. Liu, X.F. Chen and W. Zhu, “ Comparison study on sol–gel Pb(Zr0.3Ti0.7)O3 and Pb(Zr0.3Ti0.7)O3 /PbTiO3 multilayer thin films for pyroelectric infrared detectors, ” Microelectronic Engineering, Vol. 66, 738–744 (2003).

    無法下載圖示 本全文未授權公開
    QR CODE