研究生: |
林庭莉 Lin, Ting-Li |
---|---|
論文名稱: |
以官能化二硫化鉬增強表面電漿子生醫晶片的靈敏度於新型妊娠相關血漿蛋白(PAPP-A2)在臨床血清的檢測 Sensitivity Enhancement of Functionalized MoS2 Based Plasmonic Biosensors for Detection of Pregnancy Associated Plasma Protein A2 (PAPP-A2) in Clinical Serum Samples |
指導教授: |
邱南福
Chiu, Nan-Fu |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 表面電漿子共振 、生物感測器 、官能化二硫化鉬 、姙娠相關血漿 蛋白A2 |
英文關鍵詞: | Surface plasmon resonance, Biosensor, Functionalized MoS2, PAPP-A2 |
DOI URL: | https://doi.org/10.6345/NTNU202202918 |
論文種類: | 學術論文 |
相關次數: | 點閱:207 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面電漿子共振生物感測器具有高靈敏度、免標記和即時檢測的特性,原理是利用光學感測生物分子結合後其相關折射率變化,進而達到分子診斷之效果。本研究提出新型感測材料,以二硫化鉬為基材進行表面改質修飾羧基(-COOH),以提升生物間的親和力(affinity),及增強界面的功函數(work function)與電場傳播特性進而提升檢測靈敏度。
本研究使用兩種方式製備官能化二硫化鉬晶片,分別為將草酸(Oxalic)及氯乙酸(MCA)兩種有機酸的羧基(-COOH)修飾至二硫化鉬表面,進行感測材料的優質化比較。其中氯乙酸修飾技術,主要是以氯原子佔據硫空缺,有較高的穩定性及結合率,有別於傳統的方法以硫醇直接吸附於硫空缺。利用XPS、FTIR、TEM、UPS和Zeta potential等方式成功證實羧基修飾至二硫化鉬表面,且於XPS的分析結果顯示,羧基在碳原素的含量佔24.4%,在氧原素中佔28.2%。在生物檢測方面,提出低注入量(20 μL)和低流速(6 μL/min)於牛血清白蛋白免疫法實驗,進行與傳統SPR晶片靈敏度比較,在氯乙酸修飾的官能化二硫化鉬晶片靈敏度提升2.35倍。在PAPP-A2重組蛋白的實驗,迴歸係數達到R2=0.99,而加入干擾物後並不影響靈敏度與線性值。於檢測臨床血清樣本之新型妊娠相關血漿蛋白(PAPP-A2)的實驗,將檢體稀釋至40,000倍(0.05 pg/mL),仍可檢測到共振角位移量為0.96 mo,且線性迴歸係數可達到R2=0.958。
由此可證明本研究開發的官能化二硫化鉬感測晶片具有高靈敏度及高親和性之優勢,且PAPP-A2擁有高的專一性,有潛力成為未來在妊娠疾病診斷的新型指標蛋白,有望成為唐氏症之篩檢蛋白,可達成快速篩檢及高檢出率之目標。
The advantages of surface plasmon resonance (SPR) biosensor includes high sensitivity, lable-free and real-time monitoring. The principle is the use of optical sensing interfacial refractive index changes associated with any affinity binding interaction between a biomolecule immobilized on a sensor surface. In this study, we propse a new sensing material, which modified the carboxyl acid groups (-COOH) with molybdenum disulfide (MoS2) to enhance the bio-interaction affinity, the work function and electric field propagation characteristics. Thereby improving the detection sensitivity.
In this study, functionalized MoS2 chips (f-MoS2 chip) were prepared in two ways. The carboxyl acid groups (-COOH) of oxalic and chloroacetic acid (MCA) were modified to the surface of MoS2 to carry out the quality of the sensing material comparison. Which MCA modification technology, mainly chlorine atoms occupy sulfur vacancies, have a high stability and binding efficiency, different from the traditional method of thiol ligand modifications, in this instance, they yield physisorbed disulfides that are easily removed.
The results of XPS analysis showed the content of carboxyl group was 24.4% in C1s and 28.2% in O1s, and f-MoS2 was confirmed by XPS, FTIR, TEM, TEM, UPS and Zeta potential.
In the biological detection, low injection (20 μL) and low flow rate (6 μL / min) in bovine serum albumin (BSA) immunoaffinity detection were carried out to compare with traditional SPR chip sensitivity in the presence of f-MoS2 (MCA) chip sensitivity increased by 2.35 times. In the PAPP-A2 recombinant protein experiment, the R2=0.99, and after adding the interference does not affect the sensitivity and linearity.
PAPP-A2 in clinical serum samples, the sample was diluted to 40000 times, and the SPR angle of PAPP-A2 at a concentration of about 0.05 pg/mL could still be detected, R2 = 0.958.
We demonstrated that f-MoS2 chip has high sensitivity in the detection of clinical samples. PAPP-A2 has a high specificity and has the potential to become a new indicator protein for future diagnosis of pregnancy disorders, which is expected to be a screening protein for Down's syndrome, achieving rapid screening and high detection rates in the future.
參考文獻
[1]R. Friend and A. Yoffe, "Electronic Properties Of Intercalation Complexes Of The Transition Metal Dichalcogenides", Adv. Phys., 1987, 36, 1-94.
[2]K. Novoselov, "Electric Field Effect in Atomically Thin Carbon Films", Science, 2004 , 306, 666-669.
[3]C. Ataca, H. Şahin and S. Ciraci, "Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure", J. Phys. Chem. C, 2012, 116, 8983-8999.
[4]A. Geim and I. Grigorieva, "Van Der Waals Heterostructures", Nature, 2013, 499, 419-425.
[5]Y. Huang, C. Peng, R. Chen, Y. Huang and C. Ho, "Transport Properties in Semiconducting Nbs2 Nanoflakes", Appl. Phys. Lett., 2014, 105, 093106.
[6]S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, Li Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, "Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene", ACS Nano, 2013, 7, 2898-2926.
[7]C. Lee, H. Yan, L. Brus, T. Heinz, J. Hone and S. Ryu, "Anomalous Lattice Vibrations of Single- and Few-Layer MoS2", ACS Nano, 2010, 4, 2695-2700.
[8]X. Li and H. Zhu, "Two-dimensional MoS2: Properties, Preparation, and Applications", J. Materiomics, 2015, 1, 33-44.
[9]B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, "Single-Layer MoS2 Transistors", Nature Nanotech., 2011, 6, 47-150.
[10]S. Su, J. Chao, D. Pan, L. Wang and C. Fan, "Electrochemical Sensors Using Two-Dimensional Layered Nanomaterials", Electroanalysis, 2015, 27, 1062-1072.
[11]I. Song, C. Park and H. C. Choi " Synthesis and Properties of Molybdenum Disulphide: from Bulk to Atomic Layers ", RSC Adv., 2015, 5, 7495-7514.
[12]K. Kalantar-zadeh and J. Ou, "Biosensors Based on Two-Dimensional MoS2", ACS Sens., 2016, 1, 5-16.
[13]W. Zhang, P. Zhang, Z. Su and G. Wei, "Synthesis and Sensor Applications of MoS2-Based Nanocomposites", Nanoscale, 2015, 7, 18364-18378.
[14]X. Chen, N. C. Berner, C. Backes, G. S. Duesberg and A. R. McDonald, "Functionalization of Two-Dimensional MoS2: On the Reaction Between MoS2 and Organic Thiols", Angew. Chem. Int. Ed., 2016, 55, 5803-5808.
[15]J. Homola, "Surface Plasmon Resonance Based Sensors. " [New York]: Springer-Verlag Berlin Heidelberg, 2006.
[16]N. F. Chiu, T.Y. Huang, C. C. Kuo, W. C. Lee, M. H. Hsieh and H. C. Lai, "Single-Layer Graphene Based SPR Biochips for Tuberculosis Bacillus Detection", Proc. SPIE8427, 2012
[17]N. F. Chiu, S. Y. Fan, C. D. Yang and T. Y. Huang, "Carboxyl-Functionalized Graphene Oxide Composites as SPR Biosensors with Enhanced Sensitivity for Immunoaffinity Detection", Biosens. Bioelectron., 2017, 89, 370-376.
[18]Q. Ouyang, S. Zeng, X. Dinh, P. Coquet and K. Yong, "Sensitivity Enhancement of MoS2 Nanosheet Based Surface Plasmon Resonance Biosensor", Procedia Engineering, 2016, 140, 134-139.
[19]http://sowf.moi.gov.tw/stat/year/y02-04.ods [Accessed 28 June 2017]
[20]G. Kerins, K. Petrovic, M. Bruder and C. Gruman, "Medical Conditions and Medication use in Adults with Down Syndrome: A Descriptive Analysis", Downs Syndr Res Pract., 2008, 12, 141-147.
[21]S. Munnangi, S. Gross, R. Madankumar, G. Salcedo and S. Reznik, "Pregnancy Associated Plasma Protein-A2: A Novel Biomarker for Down Syndrome", Placenta, 2014, 35, 900-906.
[22]R. Dickinson and L. Pauling, "The Crystal Structure of Molybdenite", J. Am. Chem. Soc., 1923, 45, 1466-1471.
[23]R. Frindt and A. Yoffe, "Physical Properties of Layer Structures: Optical Properties and Photoconductivity of Thin Crystals of Molybdenum Disulphide", Proc. R. Soc. A: Mathematical, Physical and Engineering Sciences, 1963, 273, 69-83.
[24]P. Joensen, R. Frindt and S. Morrison, "Single-layer MoS2", Mater. Res. Bull., 1986, 21, 457-461.
[25]R. Tenne, L. Margulis, M. Genut and G. Hodes, "Polyhedral and Cylindrical Structures of Tungsten Disulphide", Nature, 1992, 360, 444-446.
[26]B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti & A. Kis, "Single-layer MoS2 transistors", Nature Nanotech., 2011, 6, 147–150.
[27]R. Anbazhagan, H. Wang, H. Tsai and R. Jeng, "Highly Concentrated MoS2 Nanosheets in Water Achieved by Thioglycolic Acid as Stabilizer and used as Biomarkers", RSC Adv., 2014, 4, 42936-42941.
[28]D. Jariwala, V. Sangwan, L. Lauhon, T. Marks and M. Hersam, "Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides", ACS Nano, 2014, 8, 1102-1120.
[29]R. Addou, L. Colombo and R. Wallace, "Surface Defects on Natural MoS2", ACS Appl. Mat. Interfaces, 2015, 7, 11921-11929.
[30]G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen and M. Chhowalla, "Photoluminescence from Chemically Exfoliated MoS2", Nano Letters, 2011, 11, 5111-5116.
[31]D. Akinwande, N. Petrone and J. Hone, "Two-dimensional flexible nanoelectronics", Nat. Commun., 2014, 5, 5678.
[32]R. Chianelli, M. Siadati, M. De la Rosa, G. Berhault, J. Wilcoxon, R. Bearden and B. Abrams, "Catalytic Properties of Single Layers of Transition Metal Sulfide Catalytic Materials", Catalysis Reviews, 2006, 48, 1-41.
[33]A. Tuxen, J. Kibsgaard, H. Gobel, E. Lægsgaard, H. Topsoe, J. V. Lauritsen and F. Besenbacher, "Size Threshold in the Dibenzothiophene Adsorption on MoS2 Nanoclusters", ACS Nano, 2010, 4, 4677-4682.
[34]D. Sim, M. Kim, S. Yim, M. Choi, J. Choi, S. Yoo and Y. S. Jung "Controlled Doping of Vacancy-Containing Few-Layer MoS2 via Highly Stable Thiol-Based Molecular Chemisorption", ACS Nano, 2015, 9, 12115-12123.
[35]S. Chou, M. De, J. Kim, S. Byun, C. Dykstra, J. Yu, J. Huang and V. P. Dravid, "Ligand Conjugation of Chemically Exfoliated MoS2", J. Am. Chem. Soc., 2013, 135, 4584-4587.
[36]J. Kim, H. Yoo, H. Choi and H. Jung, "Tunable Volatile Organic Compounds Sensor by Using Thiolated Ligand Conjugation on MoS2", Nano Lett., 2014, 14, 5941-5947.
[37]W. Z. Teo, E. L. K. Chng, Z. Sofer and M. Pumera, "Cytotoxicity of Exfoliated Transition-Metal Dichalcogenides (MoS2, WS2, and WSe2 is Lower than that of Graphene and its Analogueses", Chem. Eur. J, 2014, 20, 9627-9632.
[38]X. Gan, H. Zhao and X. Quan, "Two-Dimensional MoS2: A Promising Building Block for Biosensors", Biosens. Bioelectron., 2017, 89, 56-71.
[39]X. Wang, F. Nan, J. Zhao, T. Yang, T. Ge and K. Jiao, "A Label-Free Ultrasensitive Electrochemical DNA Sensor Based on Thin-Layer MoS2 Nanosheets with High Electrochemical Activity", Biosens. Bioelectron., 2015, 64, 386-391.
[40]X. Xiang, J. Shi, F. Huang, M. Zheng, Q. Deng and J. Xu, "MoS2 Nanosheet-Based Fluorescent Biosensor for Protein Detection Via Terminal Protection of Small-Molecule-Linked DNA and Exonuclease III-Aided DNA Recycling Amplification", Biosens. Bioelectron., 2015, 74, 227-232.
[41]L. Wang, Y. Wang, J. Wong, T. Palacios, J. Kong and H. Yang, "Functionalized MoS2 Nanosheet-Based Field-Effect Biosensor for Label-Free Sensitive Detection of Cancer Marker Proteins in Solution", Small, 2014, 10, 1101-1105.
[42]D. Sarkar, W. Liu, X. Xie, A. Anselmo, S. Mitragotri and K. Banerjee, "Correction to MoS2 Field-Effect Transistor for Next-Generation Label-Free Biosensors", ACS Nano, 2014, 8, 5367-5367.
[43]T. Lin, L. Zhong, L. Guo, F. Fu and G. Chen, "Seeing Diabetes: Visual Detection of Glucose Based on The Intrinsic Peroxidase-Like Activity of MoS2 Nanosheets", Nanoscale, 2014, 6, 11856-11862.
[44]Y. He, J. Li and Y. Liu, "Reusable and Dual-Potential Responses Electrogenerated Chemiluminescence Biosensor for Synchronously Cytosensing and Dynamic Cell Surface N-Glycan Evaluation", Anal. Chem., 2015, 87, 9777-9785.
[45]P. Loan, W. Zhang, C. Lin, K. Wei, L. Li and C. Chen, "Graphene/MoS2 Heterostructures for Ultrasensitive Detection of DNA Hybridisation", Adv. Mater., 2014, 26, 4838-4844.
[46]S. Zeng, S. Hu, J. Xia, T. Anderson, X. Dinh, X.-M. Meng, P. Coqueta and K.-T. Yong, "Graphene–MoS2 Hybrid Nanostructures Enhanced Surface Plasmon Resonance Biosensors", Sens. actuators. B Chem., 2015, 207, 801-810.
[47]J. B. Maurya, Y. K. Prajapati, V. Singh and J. P. Saini, "Sensitivity Enhancement of Surface Plasmon Resonance Sensor Based on Graphene–MoS2 Hybrid Structure with TiO2–SiO2 Composite Layer", Appl. Phys. A, 2015, 121, 525-533.
[48]Q. Ouyang, S. Zeng, X. Dinh, P. Coquet and K. T. Yong, "Sensitivity Enhancement of MoS2 Nanosheet based Surface Plasmon Resonance Biosensor", Procedia Engineering, 2016, 140, 134-139.
[49]L. Wu, Y. Jia, L. Jiang, J. Guo, X. Dai, Y. Xiang and D. Fan, "Sensitivity Improved SPR Biosensor Based on the MoS2/Graphene–Aluminum Hybrid Structure", J. Lightwave Technol. , 2017, 35, 82-87.
[50]C. Lin, K. Chen, M. Su, C. Lee and C. Yang, "Bio-Plasmonics: Nano/micro Structure of Surface Plasmon Resonance Devices for Biomedicine", Opt. Quant. Electron., 2005, 37, 1423-1437.
[51]R. Wood, "On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum", Proc. Phys. Soc. London, 1902, 18, 269-275.
[52]R. Wood, "XXVII. Diffraction Gratings with Controlled Groove form and Abnormal Distribution of Intensity", Philos. Mag. Ser. 6, 1912, 23, 310-317.
[53]L. Rayleigh, "On the Dynamical Theory of Gratings," Proc. R. Soc, London, Ser, A, 1907, 79, 399-416.
[54]A. Hessel and A. Oliner, "A New Theory of Wood’s Anomalies on Optical Gratings", Appl. Opt., 1965, 4, 1275.
[55]R. Ritchie, "Plasma Losses by Fast Electrons in Thin Films", Physical Review, 1957, 106, 874-881.
[56]A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys., 1968, 216, 398-410.
[57]E. Kretschmann, "Die Bestimmung Optischer Konstanten Von Metallen Durch Anregung Von Oberflachen Plasmaschwingungen," Z. Phys., 1971, 241, 313-324.
[58]C. Palmer, "Diffraction Grating Anomalies II Coarse Gratings*", J. Opt. Soc. Am., 1956, 46, 50.
[59]N. F. Chiu, T. Y. Huang, H. C. Lai and K. C. Liu, "Graphene Oxide-Based SPR Biosensor Chip for Immunoassay Applications", Nanoscale Res. Lett., 2014, 9, 445.
[60]A. J. A. El-Haija, "Effective Medium Approximation for the Effective Optical Constants of a Bilayer and a Multilayer Structure Based on the Characteristic Matrix Technique", J. Appl. Phys., 2003, 93, 2590-2594.
[61]D. Krantz, J. Larsen, P. Buchanan and J. Macri, "First-Trimester Down Syndrome Screening: Free β-human Chorionic Gonadotropin and Pregnancy-Associated Plasma Protein A", Am. J. Obstet. Gynecol., 1996, 174, 612-616.
[62]I. Merkatz, H. Nitowsky, J. Macri and W. Johnson, "An Association Between Low Maternal Serum Α-Fetoprotein and Fetal Chromosomal Abnormalities", Am. J. Obstet. Gynecol., 1984, 148, 886-894.
[63]N. Wald, J. Bestwick, L. George and W. Huttly, "Antenatal Screening for Down Syndrome Using Serum Placental Growth Factor with the Combined, Quadruple, Serum Integrated and Integrated Tests", PLoS ONE, 2012, 7, e46955.
[64]N. Wald, W. Huttly and A. Hackshaw, "Antenatal Screening for Down's Syndrome with the Quadruple Test", The Lancet, 2003, 361, 835-836.
[65]H. Cuckle, N. Wald and R. Lindenbaum, "Maternal Serum Alpha-Fetoprotein Measurement: A Screening Test for Down Syndrome", The Lancet, 1984, 323, 926-929.
[66]J. E. Haddow, E. M. Kloza, D. E. Smith and G. J. Knight, "Data from an Alpha-Fetoprotein Pilot Screening Program in Maine", Obstet. Gynecol., 1983, 62, 556-560.
[67]D. Aitken, E. Wallace, J. Crossley, I. Swanston, Y. van Pareren, M. van Maarle, M. Sc., N. P. Groome, J. N. Macri and J. M. Connor, "Dimeric Inhibin A as a Marker for Down's Syndrome in Early Pregnancy", Obstet. Gynecol. Surv., 1996, 51, 603-605.
[68]K. Wenstrom, J. Owen, D. Chu and L. Boots, "Elevated Second Trimester Dimeric Inhibin A Levels Identify Down Syndrome Pregnancies", Am. J. Obstet. Gynecol., 1997, 176, S90
[69]P. Benn, "Advances in Prenatal Screening for Down Syndrome: I. General Principles and Second Trimester Testing", Clin. Chim. Acta, 2002, 323, 1-16.
[70]M. Bogart, M. Pandian and O. Jones, "Abnormal Maternal Serum Chorionic Gonadotropin Levels in Pregnancies with Fetal Chromosome Abnormalities", Prenatal Diag., 1987, 7, 623-630.
[71]J. A. Canick, G. J. Knight, G. E. Palomak1, J. E. Haddow, H. S. Cuckle and N. J. Wald, "Low Second Trimester Maternal Serum Unconjugated Oestriol in Pregnancies with Down's Syndrome", Brit. J. Obstet. Gynae., 1988, 95, 330-333.
[72]Y. M. Lo, N. Corbetta, P. Chamberlain, V. Rai, I. Sargent, C. Redman, J. S. Wainscoat., "Presence of Fetal DNA in Maternal Plasma and Serum", The Lancet, 1997, 350, 485-487.
[73]M. Farr, J. Strübe, H. Geppert, A. Kocourek, M. Mahne and H. Tschesche, "Pregnancy-Associated Plasma Protein-E (PAPP-E)", BBA-Gene. Struct. Expr., 2000, 1493, 356-362.
[74]Y. Hansen, V. Myrhøj, F. Jørgensen, C. Oxvig and S. Sørensen, "First Trimester PAPP-A2, PAPP-A and hCGβ in Small-for-Gestational-Age Pregnancies", CCLM, 2015, 54, 117-123.
[75]J. Christians, D. de Zwaan and S. Fung, "Pregnancy Associated Plasma Protein A2 (PAPP-A2) Affects Bone Size and Shape and Contributes to Natural Variation in Postnatal Growth in Mice", PLoS ONE, 2013, 8, e56260.
[76]S. Wickramasinghe, G. Rincon and J. Medrano, "Variants in the Pregnancy-Associated Plasma Protein-A2 Gene on Bos Taurus Autosome 16 are Associated with Daughter Calving Ease and Productive Life in Holstein Cattle", J. Dairy Sci., 2011, 94, 1552-1558.
[77]S. Kløverpris, E. Gaidamauskas, L. Rasmussen, M. Overgaard, C. Kronborg, U. Knudsen, M. Christiansen, A. Kumar, C. Oxvig, "A Robust Immunoassay for Pregnancy-Associated Plasma Protein-A2 Based on Analysis of Circulating Antigen: Establishment of Normal Ranges in Pregnancy", MHR: Basic science of reproductive medicine, 2013, 19, 756-763.
[78]H. Nishizawa, K. Pryor-Koishi, M. Suzuki, T. Kato, H. Kogo, T. Sekiya, H. Kurahashi, Y. Udagawa, "Increased Levels of Pregnancy-Associated Plasma Protein-A2 in the Serum of Pre-Eclamptic Patients", MHR: Basic science of reproductive medicine, 2008, 14, 595-602.
[79]S. Presolski and M. Pumera, "Covalent Functionalization of MoS2", Materials Today, 2016, 19, 140-145.
[80]L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs and P. D. Yeet, "Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2", Nano Lett., 2014, 14, 6275-6280.
[81]B. Visic, R. Dominko, M. Gunde, N. Hauptman, S. Skapin and M. Remskar, "Optical Properties of Exfoliated MoS2 Coaxial Nanotubes - Analogues of Graphene", Nanoscale Res. Lett., 2011, 6, 593.
[82]J. Li, D. Liu, B. Li, J. Wang, S. Han, L. Liu and H. Wei, "A Bio-Inspired Nacre-Like Layered Hybrid Structure of Calcium Carbonate Under the Control of Carboxyl Graphene", Cryst. Eng. Comm., 2015, 17, 520-525.
[83]X. Yang, N. Meng, Y. Zhu, Y. Zhou, W. Nie and P. Chen, "Greatly Improved Mechanical and Thermal Properties of Chitosan by Carboxyl-Functionalized MoS2 Nanosheets", J. Mater. Sci., 2015, 51, 1344-1353.
[84]M. Beluomini, J. da Silva, G. Sedenho and N. Stradiotto, "D-mannitol Sensor Based on Molecularly Imprinted Polymer on Electrode Modified with Reduced Graphene Oxide Decorated with Gold Nanoparticles", Talanta, 2017, 165, 231-239.
[85]S. Rimdusit, C. Jubsilp, S. Tiptipakorn, Alloys and composites of polybenzoxazines. Springer, 2015, 92-93.
[86]P. Huang, Y. Kong, Z. Li, F. Gao and D. Cui, "Copper Selenide Nanosnakes: Bovine Serum Albumin-Assisted Room Temperature Controllable Synthesis and Characterization", Nanoscale Res. Lett., 2010, 5, 949-956.
[87]S. Zeng, S. Hu, J. Xia, T. Anderson, X. -Q. Dinh, X. -M. Meng, P. Coquet and K. -T. Yong, "Graphene–MoS2 Hybrid Nanostructures Enhanced Surface Plasmon Resonance Biosensors", Sens. actuators. B Chem., 2015, 207, 801-810.