簡易檢索 / 詳目顯示

研究生: 陳科維
論文名稱: 利用有機磷試劑經由分子內 Wittig 反應合成三取代呋喃化合物及其在 α,β-不飽和亞胺化合物上之反應性探討
Synthesis of Trisubstituted Furans via Intramolecular Wittig Reaction and Investigation of α,β-Unsaturated Imines with Phosphine Reagents
指導教授: 林文偉
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 284
中文關鍵詞: 有機磷試劑Wittig 反應三取代呋喃化合物α,β-不飽和亞胺化合物
論文種類: 學術論文
相關次數: 點閱:186下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分成兩大主題,第一主題為三取代基呋喃化合物之合成,以及第二主題是利用α,β-不飽和亞胺經由有機磷試劑在高溫環境下反應之探討:
      具有多取代基的呋喃化合物在有機合成中佔有很重要的角色,因此本實驗室在去年開發出一種新穎的合成方法製備具有四取代基之呋喃化合物;而現在本實驗室延續此合成方法並做適當的修飾,開發出合成具有三取代基的呋喃化合物。反應先將三丁基磷與醯氯62加到反應瓶中,之後再將起始物76作為Michael addition的受體加入反應瓶,最後再加入三乙基胺,在室溫下反應10分鐘到40小時,可得到具有三個取代基之呋喃化合物79,產率在24-93%之間。我們推測合成路徑為三丁基磷先對化合物76先進行Michael addition反應,形成兩性離子中間化合物77,接著醯氯62與中間體77進行醯化反應後,形成的中間化合物81進行去質子化反應,生成的化合物78經過分子內Witting反應,即可得到呋喃化合物79。
      我們也試著利用類似的方法開發多取代的吡咯化合物;首先利用四氯化鈦試劑與胺試劑及我們現有的酮試劑進行縮和反應,先合成出目標起始物亞胺試劑,接著依序加入目標磷試劑、醯氯試劑62以及三乙基胺進行反應,然而可惜反應效率不如我們預期的理想;之後使用化合物163b於高溫下進行反應十九個小時,意外拿到產物165ba。我們也有試著針對產物165ba的合成進行一連串的最佳化篩選,然而可惜最後發現反應過程中的中間體似乎不太穩定,導致合成165ba時所得到最佳產率並不具有再現性,而我們也試著推測其合成路徑,首先由三丁基磷先對起始物163b進行1,4-addition,接著再進行N-acylation成中間產物171,之後由鹼試劑去質子化後進行acyl substitution將化合物重排成中間產物173,接著電子重排脫去磷試劑就可得到中間產物174,接著進行去質子化、電子重排後再進行1,2-addition以及質子化就可得到中間化合物177,最後再進行互變異構化就可得到目標產物165ba。

    The dissertation is divided into two parts : synthesis of trisubstituted furans (part I) and investigation of the reaction of the α,β-unsaturated imines and alkyl phosphine reagents (part II).

    Part I:
      Multi-substituted furans have important application in organic synthesis. A facile preparation of trisubstituted furans stating from the Michael acceptors 76, tributylphosphine, triethylamine and acyl chlorides 62, is realized according to our protocol. Various highly functional furans can be prepared in very mild condition (rt) within 10 min to 40 h in moderate to high yields (24-93%). The reaction mechanism is proposed to undergo the Michael reaction of Bu3P and 76 followed by acylation with 62, deprotonation of the corresponding intermediate 81, and finally an intramolecular Wittig reaction of 79.
      We also try to apply the similiar concept (the key step: Intramolecular Wittig reaction) in the synthesis of multi-substituted pyrroles. The reaction of the α,β-unsaturated imine (163b) to react with Bu3P, PhCOCl, and Et3N takes place at 80 oC for 19 h, leading to the unexpected product 165ba. The result of 165ba is not reproducible, probably due to the instability of the reaction intermediate. The reaction mechanism is proposed to undergo the 1,4-addition reaction of Bu3P toward 163b followed by acylation with 62, deprotonation of the corresponding intermediate 171, and then acyl substitution to furnish the intermediate 173. The elimination of Bu3P from the intermediate 173 proceeds to provide the intermediate 174, which then undergoes deprotonation, electronic-rearrangement, 1,2-addition, and protonation to give the intermediate 177ba. Finally, 165ba is afforded via the tautomerization of 177ba.

    第一章 有機磷試劑經由分子內Wittig反應合成三取代呋喃化合物 1-1 前言 …………………………………………………………………………………1 1-2 呋喃的合成策略及文獻介紹………………………………………………………………………………2 1-2-1 呋喃直接增加官能基化法 …………………………………………………………………………………2 1-2-2 Paal-Knorr 呋喃合成反應法 …………………………………………………………………………………3 1-2-3 Feist-Bénary 呋喃合成反應 …………………………………………………………………………………6 1-2-4 過渡金屬催化合成法 …………………………………………………………………………………8 1-2-5 其他類型呋喃合成法 …………………………………………………………………………………12 1-3 研究動機 …………………………………………………………………………………14 1-4 實驗結果與討論 …………………………………………………………………………………17 1-4-1 實驗中試劑加成順序之探討 …………………………………………………………………………………17 1-4-2 不同的R1取代基之起始物與苯醯氯反應之探討 …………………………………………………………………………………19 1-4-2-1 R1官能基在其對位具有不同取代基之起始物與苯醯氯反應之探討 …………………………………………………………………………………19 1-4-2-2 R1官能基在非對位具有取代基芳香環之起始物與苯醯氯反應之探討………………………………………………………………………………23 1-4-3 不同的R2取代基之起始物與苯醯氯反應之探討………………………………………………………………………………25 1-4-4 利用不同醯氯與對位具氰基起始物76c反應性之探討 …………………………………………………………………………………29 1-4-4-1 利用在苯醯氯上具有不同取代基的62與對位具氰基起始物76c反應性之探討 …………………………………………………………………… 29 1-4-4-2 利用非苯環醯氯試劑62與對位具氰基起始物76c反應性之探討 …………………………………………………………………………………32 1-4-5 反應機構之探討 …………………………………………………………………………………35 1-4-6 特殊起始物76與目標醯氯試劑62反應之討論 …………………………………………………………………………………36 1-4-7 針對起始物76w反應活性特性之研究 …………………………………………………………………………………41 1-4-8 立體效應之探討 …………………………………………………………………………………43 1-4-9 電子效應之探討 …………………………………………………………………………………46 1-4-10 不同磷試劑之探討 …………………………………………………………………………………50 1-4-11 合成雙取代呋喃化合物之研究 ………………………………… 50 1-4-12 結論 …………………………………………………………………………………53 1-5 實驗部分 …………………………………………………………………………………54 1-5-1 分析儀器及基本實驗操作 …………………………………………………………………………………54 1-5-2 實驗步驟及光譜數據 …………………………………………………………………………………55 第二章 有機磷試劑於α、β碳碳雙鍵的亞胺上之反應性探討 2-1 前言 …………………………………………………………………………………82 2-2 吡咯的合成策略及文獻介紹 …………………………………………………………………………………83 2-2-1 吡咯直接增加官能基化法 …………………………………………………………………………………83 2-2-2 Paal-Knorr 吡咯合成反應法 …………………………………………………………………………………85 2-2-3 Hantzsch 吡咯合成反應法………………………………………………………………………………88 2-2-4 過渡金屬催化合成法 …………………………………………………………………………………91 2-2-5 其他類型吡咯合成法 …………………………………………………………………………………94 2-3 研究動機 …………………………………………………………………………………97 2-4 實驗結果與討論 …………………………………………………………………………………98 2-4-1 起始物155的製備 …………………………………………………………………………………98 2-4-2 利用不同的磷試劑與化合物155a反應結果探討 …………………………………………………………………………………99 2-4-3 利用起始物155 (R2 ≠ H) 進行目標反應之研究 …………………………………………………………………………………102 2-4-4 利用環狀系統亞胺進行目標反應之研究 …………………………………………………………………………………104 2-4-5 反應最佳化條件 …………………………………………………………………………………108 2-4-6 反應機構之探討 …………………………………………………………………………………113 2-4-7 實驗所遭遇到的困境 …………………………………………………………………………………114 2-4-8 結論 …………………………………………………………………………………121 2-5 實驗部分 …………………………………………………………………………………122 2-5-1 分析儀器及基本實驗操作 …………………………………………………………………………………122 2-5-2 實驗步驟及光譜數據 …………………………………………………………………………………124 2-6 參考文獻 …………………………………………………………………………………130 附錄一 1H-NMR、13NMR以及31P-NMR之光譜 …………………………………………………………………………………133 附錄二 X-ray 單晶繞射結構解析數據 …………………………………………………………………………………238 附錄三 文獻發表

    (1) Elbandy, M.; Shinde, P. B.; Dang, H. T.; Hong, J.; Bae, K. S.; Jung, J. H. J. Nat. Prod. 2008, 71, 869.
    (2) Khupse, R. S.; Erhard, P. W. J. Nat. Prod. 2008, 71, 275.
    (3) Kao, C.-L.; Chern, J.-W. J. Org. Chem. 2002, 67, 6772.
    (4) Melzig, L.; Rauhut, C. B.; Knochel, P. Chem. Comm. 2009, 3536.
    (5) Knorr, L. Chem. Ber 1884, 17, 2863.
    (6) Paal, C. Chem. Ber. 1884, 17, 2756.
    (7) Amarnath, V.; Amarnath, K. J. Org. Chem. 1995, 60, 301.
    (8) Wang, G.; Guan, Z.; Tang, R.; He, Y. Synth. Commun. 2010, 40, 370.
    (9) Ceylan, M.; Gurdere, M.; Budak, Y.; Kazaz, C.; Secen, H. Synthesis 2004, 1750.
    (10) Feist, F. Chem. Ber. 1902, 35, 1545.
    (11) Kürti, L.; Czakó, B. Strategic applications of named reactions in organic synthesis; Elsevier, Amsterdam, 2005.
    (12) Mross, G.; Holtz, E.; Langer, P. J. Org. Chem. 2006, 71, 8045.
    (13) Marshall, J. A.; Robinson, E. D. J. Org. Chem. 1990, 55, 3450.
    (14) Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 10500.
    (15) Kang, J. Y.; Connell, B. T. J. Org. Chem. 2011, 76, 2379.
    (16) Ghasemnejad-Bosra, H.; Farajea, M.; Habibzadeh, S. Helv. Chim. Acta 2009, 92, 575.
    (17) Kao, T.-T.; Syu, S.-e.; Jhang, Y.-W.; Lin, W. Org. Lett 2010, 13, 3066.
    (18) Trisler, J. C.; Doty, J. K.; Robinsn, J. M. J. Org. Chem. 1969, 3421-3425.
    (19) Gololobov, Y.; Kardanov, N.; Khroustalyov, V.; Petrovskii, P. Tetrahedron Lett. 1997, 38, 7437.
    (20) Zhu, X.-F.; Henry, C. E.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 6722.
    (21) Syu, S.; Lee, Y.-T.; Jang, Y.-J.; Lin, W. Org. Lett 2011, 13, 2970.
    (22) Dudnik, A. S.; Gevorgyan, V. Angew. Chem., Int. Ed. 2007, 46, 5195.
    (23) Braun, R. U.; Mueller, T. J. J. Synthesis 2004, 2391.
    (24) Gopidas, K. R.; Cyr, D. R.; Das, P. K.; George, M. V. J. Org. Chem. 1987, 52, 5505
    (25) Morrison, B. J.; Oliver, C. J. Chem. Soc., Perkin Trans. 1 2002, 1944.
    (26) Kajikawa, S.; Noiri, Y.; Shudo, H.; Nishino, H.; Kurosawa, K. Synthesis 1998, 1457.
    (27) Perrier, H.; Bayly, C.; Laliberte, F.; Huang, Z.; Rasori, R.; Robichaud, A.; Girard, Y.; Macdonald, D. Bio. Med. Chem. Lett. 1999, 9, 323.
    (28) Vermaa, A. K.; Koula, S.; Pannub, A. P. S.; Razdana, T. K. Tetrahedron 2007, 63, 8715
    (29) Schramm, O. G.; Müller, T. J. J. Synlett.2006, 1841.
    (30) Vaijayanthia, T.; Chadhab, A. Tetrahedron: Asymmetry 2007, 18, 1077.
    (31) Thirunarayanana, G.; Suryaa, S.; Srinivasana, S.; Vanangamudib, G.; Sathiyendiranc, V. SPECTROCHIM ACTA A 2010, 152.
    (32) Liu, R.; Liu, Y.; Zhou, Y.-D.; Nagle, D. G. J. Nat. Prod. 2007, 70, 1741.
    (33) Sayed, K. A. E.; Hamann, M. T.; El-Rahman, H. A. A.; Zaghloul, A. M. J. Nat. Prod. 1998, 61, 848.
    (34) Wagner, A. M.; Sanford, M. S. Org. Lett. 2011, 13, 288.
    (35) Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972.
    (36) Minetto, G.; Raveglia, L. F.; Sega, A.; Taddei, M. Eur. J. Org. Chem. 2005, 5277.
    (37) Hantzsch, A. Ber. Dtsch. Chem. Ges. 1890, 23, 1474.
    (38) Kaupp, G.; Schmeyers, J.; Kuse, A.; Atfeh, A. Angew. Chem. Int. Ed 1999, 38, 2896.
    (39) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260.
    (40) Wang, H.-Y.; Mueller, D. S.; Sachwani, R. M.; Londino, H. N.; Anderson, L. L. Org. Lett. 2010, 12, 2290.
    (41) Lu, Y.; Arndtsen, B. A. Org. Lett. 2009, 11, 1369.
    (42) Donohoe, T. J.; Race, N. J.; Bower, J. F.; Callens, C. K. A. Org. Lett. 2010, 12, 4094.
    (43) Saito, T.; Kobayashi, S.; Ohgaki, M.; Wada, M.; Nagahiro, C. Tetrahedron Lett. 2002, 43, 2627.
    (44) O'Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A. L.; Kunkel, S. R.; Przeworski, K. C.; Chass, G. A. Angew. Chem. Int. Ed. 2009, 48, 6836.
    (45) Kimpe, N. D.; Keppens, M. Tetrahedron 1996, 52, 3705.
    (46) Lu, S.-M.; Bolm, C. Angew. Chem. Int. Ed. 2008, 47, 8920
    (47) Bouquillon, S.; Henin, F.; Muzart, J. Synthetic Commun. 2001, 31, 39.

    下載圖示
    QR CODE