研究生: |
謝磊 Hsieh, Lei |
---|---|
論文名稱: |
利用iTRAQ化學標定方法進行乳癌細胞系MCF-7多重抗藥性之差異蛋白質體學分析 Differential proteomic analysis of multidrug resistance in breast cancer cell line MCF-7 by iTRAQ technology |
指導教授: |
陳頌方
Chen, Sung-Fang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 差異蛋白質 、乳癌 |
英文關鍵詞: | differential protein |
DOI URL: | http://doi.org/10.6345/NTNU202001590 |
論文種類: | 學術論文 |
相關次數: | 點閱:79 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Hulka, B. S.; Moorman, P. G., Reprint of Breast cancer: hormones and other risk factors. Maturitas 2008, 61 (1-2), 203-213.
2. Carter, P. J., Introduction to current and future protein therapeutics: a protein engineering perspective. Experimental cell research 2011, 317 (9), 1261-1269.
3. Burdall, S. E.; Hanby, A. M.; Lansdown, M. R.; Speirs, V., Breast cancer cell lines: friend or foe? Breast cancer research 2003, 5 (2), 1-7.
4. Horwitz, K.; Costlow, M.; McGuire, W., MCF-7: a human breast cancer cell line with estrogen, androgen, progesterone, and glucocorticoid receptors. Steroids 1975, 26 (6), 785-795.
5. Shirazi, F. H.; Zarghi, A.; Ashtarinezhad, A.; Kobarfard, F.; Nakhjavani, M.; Anjidani, N.; Zendehdel, R.; Arfaiee, S.; Shoeibi, S.; Mohebi, S., Remarks in successful cellular investigations for fighting breast cancer using novel synthetic compounds. INTECH Open Access Publisher Croatia: 2011.
6. Sweeney, E. E.; McDaniel, R. E.; Maximov, P. Y.; Fan, P.; Jordan, V. C., Models and mechanisms of acquired antihormone resistance in breast cancer: significant clinical progress despite limitations. Hormone molecular biology and clinical investigation 2012, 9 (2), 143-163.
7. Sørlie, T.; Perou, C. M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M. B.; Van De Rijn, M.; Jeffrey, S. S., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences 2001, 98 (19), 10869-10874.
8. Bange, J.; Zwick, E.; Ullrich, A., Molecular targets for breast cancer therapy and prevention. Nature medicine 2001, 7 (5), 548-552.
9. Fisher, B.; Costantino, J. P.; Wickerham, D. L.; Cecchini, R. S.; Cronin, W. M.; Robidoux, A.; Bevers, T. B.; Kavanah, M. T.; Atkins, J. N.; Margolese, R. G., Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. Journal of the National Cancer Institute 2005, 97 (22), 1652-1662.
10. Lee, J. J.; Loh, K.; Yap, Y.-S., PI3K/Akt/mTOR inhibitors in breast cancer. Cancer biology & medicine 2015, 12 (4), 342.
11. Fry, D. W.; Harvey, P. J.; Keller, P. R.; Elliott, W. L.; Meade, M.; Trachet, E.; Albassam, M.; Zheng, X.; Leopold, W. R.; Pryer, N. K., Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Molecular cancer therapeutics 2004, 3 (11), 1427-1438.
12. Toogood, P. L.; Harvey, P. J.; Repine, J. T.; Sheehan, D. J.; VanderWel, S. N.; Zhou, H.; Keller, P. R.; McNamara, D. J.; Sherry, D.; Zhu, T., Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. Journal of medicinal chemistry 2005, 48 (7), 2388-2406.
13. Whittaker, S. R.; Mallinger, A.; Workman, P.; Clarke, P. A., Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacology & therapeutics 2017, 173, 83-105.
14. Finn, R. S.; Aleshin, A.; Slamon, D. J., Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Research 2016, 18 (1), 17.
15. Steger, G. G.; Gnant, M.; Bartsch, R., Palbociclib for the treatment of postmenopausal breast cancer–an update. Expert opinion on pharmacotherapy 2016, 17 (2), 255-263.
16. Beaver, J. A.; Amiri-Kordestani, L.; Charlab, R.; Chen, W.; Palmby, T.; Tilley, A.; Zirkelbach, J. F.; Yu, J.; Liu, Q.; Zhao, L., FDA approval: palbociclib for the treatment of postmenopausal patients with estrogen receptor–positive, HER2-negative metastatic breast cancer. Clinical Cancer Research 2015, 21 (21), 4760-4766.
17. Boér, K., Impact of palbociclib combinations on treatment of advanced estrogen receptor-positive/human epidermal growth factor 2-negative breast cancer. OncoTargets and therapy 2016, 9, 6119.
18. Bouchal, P.; Roumeliotis, T.; Hrstka, R.; Nenutil, R.; Vojtesek, B.; Garbis, S. D., Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis. Journal of proteome research 2009, 8 (1), 362-373.
19. Chen, Y.; Choong, L.-Y.; Lin, Q.; Philp, R.; Wong, C.-H.; Ang, B.-K.; Tan, Y.-L.; Hew, C.-L.; Shah, N.; Druker, B. J., Differential expression of novel tyrosine kinase substrates during breast cancer development. Molecular & Cellular Proteomics 2007, 6 (12), 2072-2087.
20. Wolters, D. A.; Washburn, M. P.; Yates, J. R., An automated multidimensional protein identification technology for shotgun proteomics. Analytical chemistry 2001, 73 (23), 5683-5690.
21. Gruber, K. A.; Stein, S.; Brink, L.; Radhakrishnan, A.; Udenfriend, S., Fluorometric assay of vasopressin and oxytocin: a general approach to the assay of peptides in tissues. Proceedings of the National Academy of Sciences 1976, 73 (4), 1314-1318.
22. Gilar, M.; Olivova, P.; Daly, A. E.; Gebler, J. C., Two‐dimensional separation of peptides using RP‐RP‐HPLC system with different pH in first and second separation dimensions. Journal of separation science 2005, 28 (14), 1694-1703.
23. Yang, F.; Shen, Y.; Camp, D. G.; Smith, R. D., High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis. Expert review of proteomics 2012, 9 (2), 129-134.
24. Stein, D. R.; Hu, X.; McCorrister, S. J.; Westmacott, G. R.; Plummer, F. A.; Ball, T. B.; Carpenter, M. S., High pH reversed‐phase chromatography as a superior fractionation scheme compared to off‐gel isoelectric focusing for complex proteome analysis. Proteomics 2013, 13 (20), 2956-2966.
25. Spicer, V.; Ezzati, P.; Neustaeter, H.; Beavis, R. C.; Wilkins, J. A.; Krokhin, O. V., 3D HPLC-MS with reversed-phase separation functionality in all three dimensions for large-scale bottom-up proteomics and peptide retention data collection. Analytical chemistry 2016, 88 (5), 2847-2855.
26. Washburn, M. P.; Wolters, D.; Yates, J. R., Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature biotechnology 2001, 19 (3), 242-247.
27. Hao, P.; Qian, J.; Ren, Y.; Sze, S. K., Electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) versus strong cation exchange (SCX) for fractionation of iTRAQ-labeled peptides. Journal of proteome research 2011, 10 (12), 5568-5574.
28. Currie, E.; Schulze, A.; Zechner, R.; Walther, T. C.; Farese Jr, R. V., Cellular fatty acid metabolism and cancer. Cell metabolism 2013, 18 (2), 153-161.
29. Tsaniras, S. C.; Kanellakis, N.; Symeonidou, I.; Nikolopoulou, P.; Lygerou, Z.; Taraviras, S. In Licensing of DNA replication, cancer, pluripotency and differentiation: an interlinked world?, Seminars in cell & developmental biology, Elsevier: 2014; pp 174-180.
30. Otto, T.; Sicinski, P., Cell cycle proteins as promising targets in cancer therapy. Nature Reviews Cancer 2017, 17 (2), 93.
31. Kuhajda, F. P., Fatty acid synthase and cancer: new application of an old pathway. Cancer research 2006, 66 (12), 5977-5980.
32. Menendez, J. A.; Lupu, R., Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Reviews Cancer 2007, 7 (10), 763-777.
33. Kuhajda, F. P.; Jenner, K.; Wood, F. D.; Hennigar, R. A.; Jacobs, L. B.; Dick, J. D.; Pasternack, G. R., Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proceedings of the National Academy of Sciences 1994, 91 (14), 6379-6383.
34. Liu, Y., Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate cancer and prostatic diseases 2006, 9 (3), 230-234.
35. Wang, L.; Harris, T. E.; Roth, R. A.; Lawrence, J. C., PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. Journal of Biological Chemistry 2007, 282 (27), 20036-20044.
36. Glorieux, C.; Zamocky, M.; Sandoval, J. M.; Verrax, J.; Calderon, P. B., Regulation of catalase expression in healthy and cancerous cells. Free Radical Biology and Medicine 2015, 87, 84-97.
37. Glorieux, C.; Calderon, P. B., Catalase down-regulation in cancer cells exposed to arsenic trioxide is involved in their increased sensitivity to a pro-oxidant treatment. Cancer cell international 2018, 18 (1), 1-9.
38. Hiscott, J.; Pitha, P.; Genin, P.; Nguyen, H.; Heylbroeck, C.; Mamane, Y.; Algarte, M.; Lin, R., Triggering the interferon response: the role of IRF-3 transcription factor. Journal of interferon & cytokine research 1999, 19 (1), 1-13.
39. Collins, S. E.; Noyce, R. S.; Mossman, K. L., Innate cellular response to virus particle entry requires IRF3 but not virus replication. Journal of virology 2004, 78 (4), 1706-1717.
40. Hawkin, R.; Arends, M.; Ritchie, A.; Langdon, S.; Miller, W., Tamoxifen increases apoptosis but does not influence markers of proliferation in an MCF-7 xenograft model of breast cancer. The Breast 2000, 9 (2), 96-106.
41. Lee, J.-H.; Takahashi, T.; Yasuhara, N.; Inazawa, J.; Kamada, S.; Tsujimoto, Y., Bis, a Bcl-2-binding protein that synergizes with Bcl-2 in preventing cell death. Oncogene 1999, 18 (46), 6183-6190.
42. Rosati, A.; Graziano, V.; De Laurenzi, V.; Pascale, M.; Turco, M., BAG3: a multifaceted protein that regulates major cell pathways. Cell death & disease 2011, 2 (4), e141-e141.
43. Pagano, M.; Pepperkok, R.; Verde, F.; Ansorge, W.; Draetta, G., Cyclin A is required at two points in the human cell cycle. The EMBO journal 1992, 11 (3), 961-971.
44. Yam, C.; Fung, T.; Poon, R., Cyclin A in cell cycle control and cancer. Cellular and Molecular Life Sciences CMLS 2002, 59 (8), 1317-1326.
45. Kostantin, E.; Hardy, S.; Valinsky, W. C.; Kompatscher, A.; de Baaij, J. H.; Zolotarov, Y.; Landry, M.; Uetani, N.; Martínez-Cruz, L. A.; Hoenderop, J. G., Inhibition of PRL-2· CNNM3 protein complex formation decreases breast cancer proliferation and tumor growth. Journal of Biological Chemistry 2016, 291 (20), 10716-10725.
46. Morris, J. C.; Chiche, J.; Grellier, C.; Lopez, M.; Bornaghi, L. F.; Maresca, A.; Supuran, C. T.; Pouysségur, J.; Poulsen, S.-A., Targeting hypoxic tumor cell viability with carbohydrate-based carbonic anhydrase IX and XII inhibitors. Journal of medicinal chemistry 2011, 54 (19), 6905-6918.
47. Chiche, J.; Ilc, K.; Laferriere, J.; Trottier, E.; Dayan, F.; Mazure, N. M.; Brahimi-Horn, M. C.; Pouysségur, J., Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer research 2009, 69 (1), 358-368.
48. Kuang, W. W.; Thompson, D. A.; Hoch, R. V.; Weigel, R. J., Differential screening and suppression subtractive hybridization identified genes differentially expressed in an estrogen receptor-positive breast carcinoma cell line. Nucleic acids research 1998, 26 (4), 1116-1123.
49. Adam, P. J.; Boyd, R.; Tyson, K. L.; Fletcher, G. C.; Stamps, A.; Hudson, L.; Poyser, H. R.; Redpath, N.; Griffiths, M.; Steers, G., Comprehensive proteomic analysis of breast cancer cell membranes reveals unique proteins with potential roles in clinical cancer. Journal of Biological Chemistry 2003, 278 (8), 6482-6489.
50. Catalina-Rodriguez, O.; Kolukula, V. K.; York Tomita, A. P.; Palmieri, F.; Wellstein, A.; Byers, S.; Giaccia, A. J.; Glasgow, E.; Albanese, C.; Avantaggiati, M. L., The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis. Oncotarget 2012, 3 (10), 1220.
51. Falasca, M.; Hughes, W. E.; Dominguez, V.; Sala, G.; Fostira, F.; Fang, M. Q.; Cazzolli, R.; Shepherd, P. R.; James, D. E.; Maffucci, T., The role of phosphoinositide 3-kinase C2α in insulin signaling. Journal of Biological Chemistry 2007, 282 (38), 28226-28236.
52. Conte, N.; Charafe-Jauffret, E.; Delaval, B.; Adélaïde, J.; Ginestier, C.; Geneix, J.; Isnardon, D.; Jacquemier, J.; Birnbaum, D., Carcinogenesis and translational controls: TACC1 is down-regulated in human cancers and associates with mRNA regulators. Oncogene 2002, 21 (36), 5619-5630.
53. Cully, M.; Shiu, J.; Piekorz, R. P.; Muller, W. J.; Done, S. J.; Mak, T. W., Transforming acidic coiled coil 1 promotes transformation and mammary tumorigenesis. Cancer research 2005, 65 (22), 10363-10370.
54. Cavell, B. E.; Syed Alwi, S. S.; Donlevy, A. M.; Proud, C. G.; Packham, G., Natural product-derived antitumor compound phenethyl isothiocyanate inhibits mTORC1 activity via TSC2. Journal of natural products 2012, 75 (6), 1051-1057.
55. Bhaskar, P. T.; Hay, N., The two TORCs and AKT. Developmental cell 2007, 12 (4), 487-502.
56. Kawamoto, H.; Koizumi, H.; Uchikoshi, T., Expression of the G2-M checkpoint regulators cyclin B1 and cdc2 in nonmalignant and malignant human breast lesions: immunocytochemical and quantitative image analyses. The American journal of pathology 1997, 150 (1), 15.
57. Yuan, J.; Yan, R.; Krämer, A.; Eckerdt, F.; Roller, M.; Kaufmann, M.; Strebhardt, K., Cyclin B1 depletion inhibits proliferation and induces apoptosis in human tumor cells. Oncogene 2004, 23 (34), 5843-5852.
58. Xie, X. H.; An, H. J.; Kang, S.; Hong, S.; Choi, Y. P.; Kim, Y. T.; Choi, Y. D.; Cho, N. H., Loss of Cyclin B1 followed by downregulation of Cyclin A/Cdk2, apoptosis and antiproliferation in Hela cell line. International journal of cancer 2005, 116 (4), 520-525.
59. Rae, J. M.; Johnson, M. D.; Scheys, J. O.; Cordero, K. E.; Larios, J. M.; Lippman, M. E., GREB1 is a critical regulator of hormone dependent breast cancer growth. Breast cancer research and treatment 2005, 92 (2), 141-149.
60. Sarafian, V.; Jadot, M.; Foidart, J. M.; Letesson, J. J.; Van den Brûle, F.; Castronovo, V.; Wattiaux, R.; Wattiaux‐De Coninck, S., Expression of Lamp‐1 and Lamp‐2 and their interactions with galectin‐3 in human tumor cells. International journal of cancer 1998, 75 (1), 105-111.
61. Andrejewski, N.; Punnonen, E.-L.; Guhde, G.; Tanaka, Y.; Lüllmann-Rauch, R.; Hartmann, D.; Von Figura, K.; Saftig, P., Normal lysosomal morphology and function in LAMP-1-deficient mice. Journal of Biological Chemistry 1999, 274 (18), 12692-12701.
62. Jiang, H.; Wu, J.; He, C.; Yang, W.; Li, H., Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation. Cell research 2009, 19 (4), 458-468.
63. Jiang, H.; Luo, S.; Li, H., Cdk5 activator-binding protein C53 regulates apoptosis induced by genotoxic stress via modulating the G2/M DNA damage checkpoint. Journal of Biological Chemistry 2005, 280 (21), 20651-20659.
64. Wang, J.; He, X.; Luo, Y.; Yarbrough, W. G., A novel ARF-binding protein (LZAP) alters ARF regulation of HDM2. Biochemical Journal 2006, 393 (2), 489-501.
65. Bruening, W.; Giasson, B. I.; Klein‐Szanto, A. J.; Lee, V. M. Y.; Trojanowski, J. Q.; Godwin, A. K., Synucleins are expressed in the majority of breast and ovarian carcinomas and in preneoplastic lesions of the ovary. Cancer: Interdisciplinary International Journal of the American Cancer Society 2000, 88 (9), 2154-2163.
66. Jia, T.; Liu, Y. E.; Liu, J.; Shi, Y. E., Stimulation of breast cancer invasion and metastasis by synuclein γ. Cancer research 1999, 59 (3), 742-747.
67. Kong, Y.; Kejun, N.; Yin, Y., Identification and characterization of CAC1 as a novel CDK2-associated cullin. Cell Cycle 2009, 8 (21), 3552-3561.
68. Choi, H.; Lee, S. H.; Um, S.-J.; Kim, E.-J., CACUL1 functions as a negative regulator of androgen receptor in prostate cancer cells. Cancer Letters 2016, 376 (2), 360-366.
69. Westbrook, L.; Manuvakhova, M.; Kern, F. G.; Estes, N. R.; Ramanathan, H. N.; Thottassery, J. V., Cks1 regulates cdk1 expression: a novel role during mitotic entry in breast cancer cells. Cancer Research 2007, 67 (23), 11393-11401.
70. Yang, R.; Müller, C.; Huynh, V.; Fung, Y. K.; Yee, A. S.; Koeffler, H. P., Functions of cyclin A1 in the cell cycle and its interactions with transcription factor E2F-1 and the Rb family of proteins. Molecular and cellular biology 1999, 19 (3), 2400-2407.