研究生: |
余安棋 YU, An-Chi |
---|---|
論文名稱: |
應用最大熵物種分布模式與衛星影像預測嘉義地區沙氏變色蜥之分布 Predicting the distribution of brown anole (Anolis sagrei) with MaxEnt model and satellite image in Chiayi, Taiwan |
指導教授: |
許嘉恩
Sheu, Jia-En |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 最大熵物種分布模式 、衛星影像 、入侵種 、沙氏變色蜥 |
英文關鍵詞: | MaxEnt, satellite image, invasive species, The brown anole (Anolis sagrei) |
DOI URL: | http://doi.org/10.6345/NTNU201900142 |
論文種類: | 學術論文 |
相關次數: | 點閱:193 下載:17 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
沙氏變色蜥(Anolis sagrei)列名在已入侵外來種處理分級名單中的優先管理防制物種,指出沙氏變色蜥可能會是未來快速擴張的入侵物種。物種分布模式(Species distribution models, SDMs)對於探索未知的生物分布上,展現強大的空間預測能力;而遙測影像偵測空間異質性,在管理生物資源上有重要價值。本研究預期繪出嘉義地區海拔500公尺以下沙氏變色蜥的潛在棲息地,並從選擇的變數中解釋沙氏變色蜥偏好的棲地特性。
2018年7月在嘉義縣水上鄉三界埔的樣區內,收集了20個沙氏變色蜥出現點位作為訓練樣本,並用全球生物多樣性資訊機構下載的出現記錄作為樣區的測試用資料。環境變數採用ASTER數值高程模型、WorldClim氣候資料、Landsat 8衛星影像所產生的28個空間圖層,作為MaxEnt最大熵物種分布模式的參數。最後選擇高程值、亮度溫度、土地覆蓋分類、NDVI、坡度作為模式的預測變數。
訓練樣本模式AUC值0.989,顯示模式具有非常好的判別力。本研究從DEM的結果,推論沙氏變色蜥偏好高溫而較乾燥的環境;大氣層頂亮度溫度顯示沙氏變色蜥偏好高溫環境;土地覆蓋的結果顯示沙氏變色蜥在所有類型的棲地都可能成攻入侵;NDVI發現植被覆蓋不良與茂盛,都會使沙氏變色蜥的出現機率下降。
本研究結果提供沙氏變色蜥的空間分布圖,理解沙氏變色蜥所偏好的棲地特性,可以做為後續入侵生物經營空間管理所需的基礎。另一方面,遙測影像對於在物種分布模式上有改進效果,可以作為未來高解析度的物種分布研究的參考。
The brown anole (Anolis sagrei) has been rapidly expanding in Taiwan in the last two decades. However, its potential distribution is still not clear. Most of the lizard distribution studies use interpolated climatic data which present average states in spatial and temporal scale. We use remote sesning data to keep spatial heterogeneity that can’t be shown in interpolated climatic data. The first aim of this study is to determine the potential habitats of the brown anole less than 500 meters above sea level in Chiayi area. Second, we are wondering the properties of the habitat which affect the probability of occurrence.
We collected 20 the brown anole occurrences with stratified random sampling based on land cover classification in Santzepu, Chiayi County in July, 2018. 29 environmental coverages are assembled from ASTER GDEM, WorldClim climatic variables, Landsat 8 image. Predictions are generated in MaxEnt and tested by GBIF occurrences t. The final model used elevation, thermal infrared, land cover, NDVI and slope. The AUC value is 0.989 which means the predictions is robust.
The result shows that the brown anole is limited less than 100 meters above sea level, which means it prefer higher temperature and less rainfall. The thermal band also shows the brown anole prefer higher temperature. Land cover and NDVI performs that the brown anole is a generalist, but prefer open vegetation sites.
In conclusion, the result can be the spatial basis of the invasive species management. We also prove the remote sensing data can provide the instant land surface states such as the temperature and the vegetation cover that can refine the predictions of species distribution modeling in lizard species.
1. 卓逸民. (2005). 外來種沙氏變色蜥對蜘蛛多樣性之影響 (II). Retrieved from
2. 張乃千. (2007). 花蓮新發現的外來種蜥蜴-沙氏變色蜥 自然保育季刊 (pp. 37-41): 特有生物研究保育中心.
3. 梁世雄. (2014). 外來入侵生物風險評估之簡介及台灣執行現況與限制 臺灣林業 Taiwan Forestry Journal (Vol. 40, pp. 15-23).
4. 莊孟憲. (2017). 嘉義林區管理處沙氏變色蜥委託計畫期末報告書. Retrieved from
5. 楊懿如. (2011). 花蓮七星潭地區外來種沙氏變色蜥分佈現況.
6. 鄭錫奇. (2009). 生物資源調查作業程序參考手册 (pp. 55 - 60): 行政院農業委員會特有生物研究保育中心.
7. Allouche, Tsoar, & Kadmon. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223-1232. doi:doi:10.1111/j.1365-2664.2006.01214.x
8. Arntzen, & Alexandrino. (2004). Ecological modelling of genetically differentiated forms of the Iberian endemic golden-striped salamander, Chioglossa lusitanica (Vol. 14).
9. Austin, & Smith. (1989). A new model for the continuum concept. Vegetatio, 83(1), 35-47. doi:10.1007/bf00031679
10. Austin. (2002). Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, 157(2), 101-118. doi:https://doi.org/10.1016/S0304-3800(02)00205-3
11. Beaumont, Hughes, & Poulsen. (2005). Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecological Modelling, 186(2), 251-270. doi:https://doi.org/10.1016/j.ecolmodel.2005.01.030
12. Begon, Townsend, & Harper. (2005). Ecology: From Individuals to Ecosystems (Vol. 51).
13. Calsbeek, Buermann, & Smith. (2009). Parallel shifts in ecology and
58
natural selection in an island lizard. BMC Evolutionary Biology, 9(1), 3. doi:10.1186/1471-2148-9-3
14. Campbell. (1996). Northern Range Expansion of the Brown Anole (Anolis sagrei) in Florida and Georgia Herpetological Review, 27, 155-157.
15. Campbell. (2000). Analyses of the effects of an exotic lizard (Anolis sagrei) on a native lizard (Anolis carolinensis) in Florida, using islands as experimental units. Knoxville, Tennessee, University of Tennessee.
16. Campbell. (2002). The Brown Anole (Anolis sagrei Dumeril and Bibron 1837). The Institute for Biological Invasions: The Invader of the Month.
17. Campbell. (2003). The introduced brown anole (Anolis sagrei) occurs in every county in peninsular Florida (Vol. 34).
18. Chase, & Leibold. (2003). Ecological Niches: Linking Classical and Contemporary Approaches. Interspecific Interactions. . The Quarterly Review of Biology, 79(1), 96-97. doi:10.1086/421654
19. Colwell. (1992). Niche: A bifurcation in the conceptual lineage of the term.
20. Corn. (1971). Upper Thermal Limits and Thermal Preferenda for Three Sympatric Species of Anolis. Journal of Herpetology, 5(1/2), 17-21. doi:10.2307/1562838
21. Elith, & Leathwick. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time (Vol. 40).
22. Elith, Graham*, Anderson, Dudík, Ferrier, Guisan, . . . Zimmermann. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. doi:doi:10.1111/j.2006.0906-7590.04596.x
23. Elith, Graham, Anderson, Dudík, Ferrier, Guisan, . . . Zimmermann. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. doi:10.1111/j.2006.0906-7590.04596.x
24. Elith, Phillips, Hastie, Dudík, Chee, & Yates. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43-57. doi:10.1111/j.1472-4642.2010.00725.x
25. Fei, Skidmore, Venus, Wang, Schlerf, Toxopeus, . . . Liu. (2012). A body
59
temperature model for lizards as estimated from the thermal environment. Journal of Thermal Biology, 37(1), 56-64. doi:https://doi.org/10.1016/j.jtherbio.2011.10.013
26. Fischer, & Lindenmayer. (2005). The sensitivity of lizards to elevation: A case study from south‐eastern Australia. Diversity and Distributions, 11, 225-233. doi:10.1111/j.1366-9516.2005.00139.x
27. Gao. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257-266. doi:https://doi.org/10.1016/S0034-4257(96)00067-3
28. Gauze. (1934). The struggle for existence. Baltimore: The Williams & Wilkins company.
29. Good. (2016). An in situ-based analysis of the relationship between land surface “skin” and screen-level air temperatures. Journal of Geophysical Research: Atmospheres, 121(15), 8801-8819. doi:doi:10.1002/2016JD025318
30. Griesemer. (1992). Niche: Historical perspectives. In E. F. K. E. A. Lloyd (Ed.), The keywords in evolutionary biology . Cambridge, MA: Harvard University Press.
31. Grinnell. (1917). The Niche-Relationships of the California Thrasher. The Auk, 34(4), 427-433. doi:10.2307/4072271
32. Guinet, Jouventin, & Malacamp. (1995). Satellite remote sensing in monitoring change of seabirds: use of Spot Image in king penguin population increase at Ile aux Cochons, Crozet Archipelago. Polar Biology, 15(7), 511-515. doi:10.1007/bf00237465
33. Guisan, & Hofer. (2003). Predicting reptile distributions at the mesoscale: relation to climate and topography. Journal of Biogeography, 30(8), 1233-1243. doi:10.1046/j.1365-2699.2003.00914.x
34. Guisan, & Zimmermann. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2), 147-186. doi:https://doi.org/10.1016/S0304-3800(00)00354-9
35. Hawlitschek, Brückmann, Berger, Green, & Glaw. (2011). Integrating field surveys and remote sensing data to study distribution, habitat use and
60
conservation status of the herpetofauna of the Comoro Islands. ZooKeys, 144, 21-79. doi:10.3897/zookeys.144.1648
36. Hof, Jansson, & Nilsson. (2012). The usefulness of elevation as a predictor variable in species distribution modelling. Ecological Modelling, 246, 86-90. doi:https://doi.org/10.1016/j.ecolmodel.2012.07.028
37. Huete. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295-309. doi:https://doi.org/10.1016/0034-4257(88)90106-X
38. Hutchinson. (1957). Concluding Remarks Cold Spring Harbor Symposia on Quantitative Biology (pp. 415-427).
39. Jaynes. (1957). Information Theory and Statistical Mechanics. Physical Review, 106(4), 620-630. Retrieved from https://link.aps.org/doi/10.1103/PhysRev.106.620
40. Johnson, Hay, & Rogers. (1998). Contemporary environmental correlates of endemic bird areas derived from meteorological satellite sensors (Vol. 265).
41. Kalboussi, & Achour. (2018). Modelling the spatial distribution of snake species in northwestern Tunisia using maximum entropy (Maxent) and Geographic Information System (GIS). Journal of Forestry Research, 29(1), 233-245. doi:10.1007/s11676-017-0436-1
42. Koike. (2006). Prediction of range expansion and optimum strategy for spatial control of feral raccoon using a metapopulation model.
43. Lee, Chen, Shang, Clulow, Yang, & Lin. (2019). A check list and population trends of invasive amphibians and reptiles in Taiwan (Vol. 829).
44. Lee. (1980). Comparative thermal ecology of two lizards. Oecologia, 44(2), 171-176. doi:10.1007/bf00572675
45. Leyequien, Verrelst, Slot, Schaepman-Strub, Heitkönig, & Skidmore. (2007). Capturing the fugitive: Applying remote sensing to terrestrial animal distribution and diversity. International Journal of Applied Earth Observation and Geoinformation, 9(1), 1-20. doi:https://doi.org/10.1016/j.jag.2006.08.002
46. Losos, Marks, & Schoener. (1993). Habitat use and ecological interactions of an introduced and a native species of Anolis lizard on Grand Cayman,
61
with a review of the outcomes of anole introductions. Oecologia, 95(4), 525-532. doi:10.1007/bf00317437
47. Macarthur, & Levins. (1967). The Limiting Similarity, Convergence, and Divergence of Coexisting Species. The American Naturalist, 101(921), 377-385. doi:10.1086/282505
48. Manel, Ceri Williams, & Ormerod. (2002). Evaluating presence-absence models in ecology: The need to account for prevalence (Vol. 38).
49. Norval, Brown, Mao, & Slater. (2017). A Description Of The Characteristics Of The Habitats Preferred By The Brown Anole (Anolis sagrei Dumeril and Bibron 1837), An Exotic Invasive Lizard Species In Southwestern and Eastern Taiwan.
50. Norval, Goldberg, & Mao. (2012). The reproductive cycle of the brown anole (Anolis sagrei), an invasive lizard species in Taiwan. 19, 75-81.
51. Norval, Mao, Chu, & Chen. (2002). A new record of an introduced species, the brown anole (Anolis sagrei)(Duméril & Bibron, 1837), in Taiwan. ZOOLOGICAL STUDIES-TAIPEI-, 41(3), 332-336.
52. Pearce, & Ferrier. (2000). Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133(3), 225-245. doi:https://doi.org/10.1016/S0304-3800(00)00322-7
53. Phillips, Anderson, & Schapire. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231-259. doi:https://doi.org/10.1016/j.ecolmodel.2005.03.026
54. Pimentel, Zuniga, & Morrison. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52(3), 273-288. doi:https://doi.org/10.1016/j.ecolecon.2004.10.002
55. Poorter. (2007). Invasive Alien Species and Protected Areas: A Scoping Report Part I. In 鄭益明 (Ed.): $Global Invasive Species Programme.
56. Rand, & Williams. (1969). The anoles of La Palma: aspects of their ecological relationships: Museum of Comparative Zoology.
57. Raxworthy, Martinez-Meyer, Horning, Nussbaum, Schneider, Ortega-Huerta, & Townsend Peterson. (2003). Predicting distributions of known and unknown reptile species in Madagascar. Nature, 426, 837.
62
doi:10.1038/nature02205
58. Root, Ustin, Zarco-Tejada, Pinilla, Kokaly, Anderson, . . . Holroyd. (2002). Comparison of AVIRIS and EO-1 hyperion for classification and mapping of invasive leafy spurge in Theodore Roosevelt National Park. Paper presented at the Proceedings of the Eleventh JPL Airborne Earth Science Workshop, NASA Jet Propulsion Laboratory.
59. Schoener, & Schoener. (1982). Intraspecific Variation in Home-Range Size in Some Anolis Lizards. Ecology, 63(3), 809-823. doi:10.2307/1936801
60. Sillero, Brito, Martín-Alfageme, García-Meléndez, Toxopeus, & Skidmore. (2012). The significance of using satellite imagery data only in Ecological Niche Modelling of Iberian herps (Vol. 7).
61. Simberloff. (1978). Using Island Biogeographic Distributions to Determine if Colonization is Stochastic. The American Naturalist, 112(986), 713-726. doi:10.1086/283313
62. Stauffer. (2002). Linking populations and habitats: Where have we been? Where are we going? In M. Scott, P. Heglund, M. Morrison, J. Haufler, M. Raphael, W. Wall, & F. Samson (Eds.), Predicting species occurrences: Issues of accuracy and scale (pp. 53-61): Island Press.
63. Stockwell. (1999). The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science, 13(2), 143-158. doi:10.1080/136588199241391
64. Strong. (1980). Null hypotheses in ecology. Synthese, 43(2), 271-285.
65. Suzuki-Ohno, Morita, Nagata, Mori, Abe, Makino, & Kawata. (2017). Factors restricting the range expansion of the invasive green anole Anolis carolinensis on Okinawa Island, Japan. Ecology and Evolution, 7(12), 4357-4366. doi:doi:10.1002/ece3.3002
66. Turner, Spector, Gardiner, Fladeland, Sterling, & Steininger. (2003). Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution, 18(6), 306-314. doi:https://doi.org/10.1016/S0169-5347(03)00070-3
67. Wardle. (2002). Islands as model systems for understanding how species affect ecosystem properties. Journal of Biogeography, 29(5‐6), 583-591.
68. West-Eberhard. (1983). Sexual Selection, Social Competition, and
63
Speciation. The Quarterly Review of Biology, 58(2), 155-183. doi:10.1086/413215
69. Williams. (1983). Ecomorphs, faunas, island size, and diverse end points in island radiations of Anolis. Lizard ecology: studies of a model organism, 326--370.
70. Wilson, & Sader. (2002). Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment, 80(3), 385-396. doi:https://doi.org/10.1016/S0034-4257(01)00318-2