簡易檢索 / 詳目顯示

研究生: 田存聖
Tien, Tsun-Sheng
論文名稱: ChatGPT於軍事文本翻譯應用研究
A Case Study of Using ChatGPT in Military Text Translation
指導教授: 陳子瑋
Chen, Tze-Wei
口試委員: 廖柏森
Liao, Posen
郁瑞麟
Yu, Ruei-Lin
陳子瑋
Chen, Tze-Wei
口試日期: 2023/06/05
學位類別: 碩士
Master
系所名稱: 翻譯研究所軍事口譯碩士在職專班
Graduate Institute of Translation and Interpretation_In-service Master's Program of Military Interpreting
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 116
中文關鍵詞: ChatGPT語言模型生成式人工智慧軍事翻譯機器翻譯
英文關鍵詞: ChatGPT, Language Models, Generative AI, Military Translation, Machine Translation
研究方法: 調查研究比較研究內容分析法半結構式訪談法
DOI URL: http://doi.org/10.6345/NTNU202301024
論文種類: 學術論文
相關次數: 點閱:191下載:40
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 軍隊近年來對翻譯與外語人才資源需求升高,本研究主要探討生成式人工智慧科技ChatGPT在軍事文本翻譯上是否能夠更有效率地處理國際軍事資訊及軍事交流等需求。本文從兩個研究問題出發,分別是譯文準確度和讀者譯文資訊理解程度。研究設計以ChatGPT的GPT-4模型,將國防譯粹中不同主題的8個文章段落翻成中文譯文,並邀集了軍事、外語及翻譯等3位專家針對ChatGPT譯文準確度進行評量,同時以問卷調查軍士官兵對譯文的主觀感受與理解程度,最後再與人工譯文的評分與意見相比較,了解差異,進而探究實際應用的可能。
    最終,在量性研究後所得分數,ChatGPT譯文的資訊理解與吸收程度在滿分5分的量表中,獲得平均3.92分,對比專業譯者的人工翻譯4.10差0.18,經由分析與個別譯文評分探討,ChatGPT相較於人工譯文並非全都較差,甚至有2段譯文的平均分數高於人工譯者,顯示雖然大部分情況下人工譯文優於ChatGPT譯文,但讀者對於ChatGPT譯文的接受程度也相當高,也同時從研究與語言連貫性分析中,了解ChatGPT在生成軍事譯文上的限制。
    除了探討ChatGPT在軍事翻譯上的應用外,本研究過程中也對AI工具有其他發現,如操作AI及提詞的使用方式,都將大幅影響產出結果,以及使用線上AI工具的資安隱私問題等,都是值得討論的議題,並且也是具有價值的研究方向,未來如何將人工智慧與人類翻譯者的力量結合,實現更高速度和效率的翻譯作業,才能在安全保密的情況下達到軍事翻譯效率優化。

    With an increasing demand for translation and foreign language expertise in the military in recent years, this study primarily investigates the potential of the generative artificial intelligence tool, ChatGPT, in military text translation. The aim is to determine whether it could provide a usable solution to enhance the efficiency of processing international military information and engagement. Our research questions focus on two areas: the accuracy of the translations and the comprehension level of the translated information by the readers.
    Using the GPT-4 model of ChatGPT, we translated eight different paragraphs from National Defense Digest into Chinese. We then invited experts in military affairs, foreign languages, and translation to evaluate the accuracy of the ChatGPT translations. Additionally, we conducted a questionnaire survey among military noncommissioned officers to understand their subjective impressions and comprehension level of the ChatGPT translations.
    The outcome of our quantitative research revealed that the comprehension and absorption levels of information in ChatGPT translations averaged at 3.92 out of 5, only 0.18points less than the score of human-translated versions. We found that not all ChatGPT translations underperformed human translations. In fact, two sections scored higher than their human-translated counterparts, indicating a high level of acceptance among readers.
    While we mainly explored the application of ChatGPT in military translation, we also discovered additional considerations with AI tools. These include the impact of different operational methods on output results and concerns related to cybersecurity and privacy. Our findings open up new directions for future research in the integration of artificial intelligence and human translators to enhance translation speed and efficiency, whilst ensuring security and confidentiality.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究問題與目的 5 第二章 文獻回顧 7 第一節 機器翻譯 7 壹、發展歷史 7 貳、特定領域應用與研究 9 第二節 生成式人工智慧ChatGPT 11 壹、ChatGPT訓練與運作原理簡介 11 貳、ChatGPT翻譯指令 15 第三節 翻譯功能論 22 第四節 翻譯品質評量 24 第三章 研究方法 27 第一節 研究對象 27 第二節 研究材料 28 第三節 研究設計 32 壹、量性研究工具設計 32 貳、量性問卷預先測試及修正 36 參、譯文準確度評量 37 第四章 研究結果與分析 40 第一節 各段落評分結果 40 壹、戰略國際關係 41 貳、區域情勢 49 參、軍事事務 57 肆、中共研究 66 第二節 準確度分析 74 第三節 研究結果總覽 78 第五章 討論 80 第一節 結論 80 第二節 ChatGPT不同指令與時間的不同產出結果 85 壹、不符合中文習慣的冗長段落 86 貳、會話涵義或反諷 88 參、誤譯字詞段落 91 第三節 從語言連貫性和語用討論ChatGPT譯文 96 第四節 研究貢獻 100 第五節 研究限制與未來研究建議 102 參考文獻 107 附錄一 翻譯品質研究問卷 114 附錄二 專家對譯文準確度評鑑知情同意書 116

    尤沐妍(2018)。《從功能翻譯理論探討機器翻譯在醫學文體的實用性-以維基百科醫學翻譯計畫為例》(未出版之碩士論文)。文藻外語大學。
    尹丕安、吳琪瑞(2014)。〈功能目的論下軍事術語翻譯策略〉。《長江大學學報:社會科學版》,37(1),93-94。
    王承中(2020年12月6日)。〈空軍升級F-16V 今年可達交機22架目標〉。中央通訊社。https://www.cna.com.tw/news/firstnews/202012060085.aspx
    史宗玲(2021)。〈高科技變動情境下的再出發—重新審視機器翻譯錯誤和後編輯策略〉。《編譯論叢》,14(2),125-166。
    李家璿(2010)。《全自動機器翻譯加後編輯與人工翻譯之比較》。國立臺灣師範大學。
    周大軍(2002)。〈英語軍語的語言特徵〉。《西安外國語學院學報》,10(3),38-41。
    林致毅(2022)。《人工翻譯與機器翻譯的新聞翻譯錯誤分析與比較》(未出版之碩士論文)。長榮大學。
    林慶隆、廖柏森、張嘉倩、史宗玲、陳碧珠、陳鵬、金超群(2020年10月30日)。〈翻譯教育如何面臨AI 的挑戰及如何運用AI[論壇]〉。《編譯論叢》,14(1),157-182。
    孫毓德(2018)。〈落實健全外語國際化 教育之軍教政策〉。《海軍學術雙月刊》,52(2),55-67。
    國防部(2019)。《新編國軍簡明美國軍語辭典》。國防部。
    張雅筑(2020)。《技術和旅遊文本機器譯文後編輯策略之差異:從語域理論觀點分析》(未出版之碩士論文)。國立高雄第一科技大學。
    張靖榕(2021年06月14日)。〈美售台100套魚叉防禦系統「發價書已簽」 陸軍借海軍6億元付頭期〉。ETtoday新聞雲。https://www.ettoday.net/news/20210614/2006340.htm
    黃家琪(2013)。《控制性語言書寫及機器翻譯:以澎湖天后宮籤詩為例》(未出版之碩士論文)。國立高雄第一科技大學。
    楊定華(2018)。《中英雙向後機器翻譯編輯策略差異之比較研究:以3C使用手冊為例》(未出版之碩士論文)。國立高雄第一科技大學。
    廖柏森(2010)。〈大學生英譯中的筆譯錯誤分析與教學上的應用〉。《編譯論叢》,3(2),101-128。
    廖柏森(2014)。〈翻譯的標準〉。廖柏森:英語與翻譯教學。https://blog.udn.com/mobile/trjason/11232430
    賴慈芸(2008)。〈四種翻譯評量工具的比較〉。《編譯論叢》,1(1),71-92。
    蘇珮瑄(2021)。《芥川文學作品《鼻子》中文翻譯之比較研究-以Google 翻譯器、文潔若與金溟若為例》(未出版之碩士論文)。輔仁大學。
    英文文獻
    Banerjee, S., Lavie, A. (2005). METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, 65–72.
    Bernd D. (2022, June 2). Canada says China 'buzzing' military flights in Asia. BBC news. https://www.bbc.com/news/world-us-canada-61654043
    Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., & Amodei, D. (2020). Language Models are Few-Shot Learners. arXiv preprint arXiv:2005.14165. https://doi.org/10.48550/arXiv.2005.14165
    Canadian International Trade Tribunal. (2002). Procurement process. https://web.archive.org/web/20110706181412/http://www.citt.gc.ca/procure/determin/pr2b029_e.asp#P90_10741
    Chen, Y., Li, J., Liang, Y., & Li, J. (2022). InstructGPT: Training Language Models to Follow Instructions with Human Feedback. arXiv preprint arXiv:2203.02155.
    Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805. Retrieved from https://arxiv.org/abs/1810.04805
    Foltz, P. W., Kintsch, W., & Landauer, T. K. (1998). The measurement of textual coherence with latent semantic analysis. Discourse Processes, 25(2&3).
    Google Neural Machine Translation. Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Google_Neural_Machine_Translation
    Graham, Y. (2020). Evaluating machine translation quality estimation for post-editing. Proceedings of the 12th Conference of the Association for Machine Translation in the Americas, 53–65.
    Greatcontent. (n.d.). The 11 Best Machine (AI) Translation Tools in 2022. Retrieved from https://greatcontent.com/machine-ai-translation-tools/
    Grice, H. P. (1975). Logic and conversation. In P. Cole & J. L. Morgan (Eds.), Speech Acts. Academic Press.
    Halliday, M. A. K., & Hasan, R. (1976). Cohesion in English. Longman.
    Hoey, M. (1991). Patterns of lexis in text. Oxford University Press.
    Hutchins, W. J. (1997). From first conception to first demonstration: The nascent years of machine translation, 1947-1954. Machine Translation, 12(3).
    Jakobson, R. (1959). On Linguistic Aspects of Translation. In R. A. Brower (Ed.), On Translation. Harvard University Press.
    Jiao, W., & Zhang, Y. (2022). Is ChatGPT A Good Translator? Yes With GPT-4 As The Engine. arXiv:2301.08745v3 [cs.CL]
    Jiao, W., Wang, W., Huang, J., Wang, X., & Tu, Z. (2021). Is ChatGPT A Good Translator? A Preliminary Study. arXiv:2301.08745v1[cs.CL]
    Levinson, S. C. (1983). Pragmatics. Cambridge University Press.
    List of US arms sales to Taiwan. Wikipedia. Retrieved from https://en.wikipedia.org/wiki/List_of_US_arms_sales_to_Taiwan
    Lommel, A. (2007). LISA QA Model 3.1. Localization Industry Standards Association.
    Mann, W. C., & Thompson, S. A. (1988). Rhetorical structure theory: Toward a functional theory of text organization. Text - Interdisciplinary Journal for the Study of Discourse, 8(3).
    Mauran, C. (2023, April 6). Whoops, Samsung workers accidentally leaked trade secrets via ChatGPT. Mashable. Retrieved from https://mashable.com/article/samsung-chatgpt-leak-details
    Munday, J. (2016). Introducing translation studies: Theories and applications (4th ed.). Routledge.
    Nagao, M. (1984). A framework of a mechanical translation between Japanese and English by analogy principle. In Proc. of the International NATO Symposium on Artificial and Human Intelligence. ISBN 978-0-444-86545-8.
    Newmark, P. (1981). Approaches to Translation. Pergamon Press.
    Nida, E. A. (1964). Toward a Science of Translating: With Special Reference to Principles and Procedures Involved in Bible Translating. Brill.
    Nord, C. (2005). Text analysis in translation: Theory, methodology, and didactic application of a model for translation-oriented text analysis. Rodopi.
    Nord, C. (2018). Translating as a purposeful activity: Functionalist approaches explained (2nd ed.). Routledge.
    O'Brien, S. & Saldanha, G. (2014). Research methodologies in translation studies. Routledge.
    OpenAI. (2023, April 25). New ways to manage your data in ChatGPT. OpenAI. Retrieved from https://openai.com/blog/new-ways-to-manage-your-data-in-chatgpt
    Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002). BLEU: A method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics. Association for Computational Linguistics.
    Pierce, J. R., & Carroll, J. B. (1966). Language and machines: Computers in translation and linguistics: A report. National Academy of Sciences-National Research Council.
    Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving Language Understanding by Generative Pre-Training. OpenAI. Retrieved from https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
    Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language Models are Unsupervised Multitask Learners. OpenAI. Retrieved from https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
    Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2019). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. arXiv preprint arXiv:1910.10683. Retrieved from https://arxiv.org/abs/1910.10683
    Reiss, K. (2000). Type, kind, and individuality of text: decision making in translation. Routledge.
    Reiss, K., & Vermeer, H. J. (2014). Towards a general theory of translational action: Skopos theory explained. Routledge.
    SAE International. (2019). SAE J2450: Translation Quality Metric. SAE International.
    SimilarWeb. (2023, May 12). Openai.com Analytics - Market Share Data & Ranking. Retrieved May 12, 2023, Retrieved from https://www.similarweb.com/website/chat.openai.com/#ranking
    Snover, M., Dorr, B., Schwartz, R., Micciulla, L., & Makhoul, J. (2006). A study of translation edit rate with targeted human annotation. Proceedings of the 7th Conference of the Association for Machine Translation in the Americas, 223–231.
    Tanskanen, S. K. (2006). Collaborating towards coherence: Lexical cohesion in English discourse. John Benjamins Publishing Company.
    TAUS. (2020). TAUS Dynamic Quality Framework (DQF). Retrieved from https://www.taus.net/quality/tools/dynamic-quality-framework
    TechOrange (2016, September 29). No need to learn English anymore; Google Translate introduces neuron-like machine learning; Miss Google is now very smart! Buzzorange. Retrieved from https://buzzorange.com/techorange/2016/09/29/googletranslation-gnmt/
    Thompson, S. A., Longacre, R. E., & Hwang, S. J. (2007). Adverbial clauses. In T. Shopen, Language Typology and Syntactic Description. Cambridge University Press.
    Toury, G. (1995). Descriptive Translation Studies and Beyond. John Benjamins Publishing Company.
    Turovsky, B. (2016, November 15). Found in translation: More accurate, fluent sentences in Google Translate. Google. Retrieved from https://www.blog.google/products/translate/found-translation-more-accurate-fluent-sentences-google-translate/
    Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems (pp. 5998-6008).
    Venuti, L. (1995). The Translator's Invisibility: A History of Translation. Routledge.
    Vermeer, H. & Reiss, K. (2014). Towards a General Theory of Translational Action: Skopos Theory Explained. Routledge.
    Vermeer, H. J. (2014). Skopos and commission in translational action. In L. Venuti, The Translation Studies Reader. 191-202. Routledge.

    下載圖示
    QR CODE