簡易檢索 / 詳目顯示

研究生: 駱曉彤
Lok, Hio-Tong
論文名稱: 山苦瓜活性物質TCD抑制人類胃癌細胞增生之作用機轉
The inhibitory mechanism of bitter melon bioactive substance, TCD, on gastric cancer cells proliferation
指導教授: 蔡帛蓉
Tsai, Po-Jung
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 64
中文關鍵詞: 胃癌三萜類化合物抑制增生內質網壓力細胞凋亡
英文關鍵詞: gastric cancer, TCD, anti-proliferation, ER stress, apoptosis
DOI URL: http://doi.org/10.6345/NTNU201900858
論文種類: 學術論文
相關次數: 點閱:264下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 動機: 先前文獻報導葫蘆烷三萜類化合物能抑制乳癌、子宮頸癌及前列腺癌細胞增生,具抗腫瘤的潛力。本研究室先前證實一種葫蘆烷三萜類化合物3β, 7β, 25-trihydroxycucurbita-5, 23-dien-19-al (TCD)能延滯細胞週期、引起細胞凋亡而抑制人類胃癌細胞株AGS細胞增生。然而其作用機轉未明,因此本研究接續探討TCD對於人類胃癌細胞株(AGS、MKN28、MKN45)增生的抑制效應及其誘導細胞凋亡之分子機制。

    方法: 使用MTT測定TCD處理對於AGS、MKN45、MKN28存活率的影響。以流式細胞儀和西方墨點分析TCD處理AGS細胞對於細胞週期與細胞凋亡之相關蛋白表現量的影響。另外以西方墨點分析內質網壓力相關蛋白(GRP78 、p-PERK、IRE-1、XBP-1、ATF4、CHOP、p-JNK)的變化。

    結果: 本實驗結果發現TCD可抑制胃癌細胞株AGS、MKN28、MKN45的增生,其IC50值分別為41, 40 和 45 μM。以TCD (30 μM)處理AGS細胞24 小時後,發現TCD經由抑制Cyclin E、Cyclin D1、CDK2、CDK4和p-Rb蛋白表現,造成細胞週期停滯於G1期。經TCD(30μM,24小時) 處理後顯著提升GRP78蛋白表現,激活未折疊蛋白反應中p-PERK、ATF-4、CHOP、p-JNK,抑制抗凋亡蛋白Bcl-2及激活凋亡蛋白Bax,活化下游 cleaved caspase 9、cleaved caspase 3和 cleaved PARP,而引起細胞凋亡。另 TCD亦可促使MKN28和MKN45細胞的提升GRP78蛋白表現,推測亦可激活這兩株細胞的未折疊蛋白反應、引起內質網壓力。以外,從MTT細胞存活分析結果發現化療藥物SN38和TCD以等比例(AGS --1:200,MKN45--1:2000,MKN28--1:300) ,合併使用時,能有效抑制AGS、MKN28和MKN45細胞增生,分別具協同 (synergism)或加成(additive)作用。

    結論: 由上述結果推論TCD可經由延滯細胞週期、引起內質網壓力導致細胞凋亡而抑制胃癌AGS細胞增生,具抗胃癌的潛力 。而TCD與SN38併用可協同或加成性的抑制胃癌細胞株增殖,推測TCD具有增強化療藥物作用的潛力,但仍待未來更多研究證實。

    Purpose: 3β, 7β, 25-trihydroxycucurbita-5, 23-dien-19-al (TCD), a dietary triterpenoid, was isolated from wild bitter melon leaf (Momordica charantia Linn. var. abbreviata Ser.). Our previous studies showed that TCD inhibited cell cycle and induced DNA breaks and apoptosis in human AGS gastric adenocarcinoma cells. However, the inhibitory mechanism of TCD on AGS cell proliferation is unclear. Therefore, the aim of this study was to investigate the mechanism of anti-proliferative effect of TCD on human gastric cancer cell lines including AGS, MKN28, and MKN45 cells.

    Methods: The MTT assay was used to determined cell viability. The effects of TCD on cell cycle regulation and apoptosis were analyzed using flow cytometric analysis and Western blot assay. Specific cellular protein expressions (GRP78, p-PERK, IRE-1, XBP-1, ATF4, CHOP, and p-JNK) were measured using Western blot analysis.

    Results: TCD significantly decreased AGS, MKN28 and MKN45 cell viability, with IC50 values of 41, 40, and 45 μM, respectively. Flow cytometric analysis indicated that TCD (30 μM) induced G1 cell-cycle phase arrest and apoptosis in AGS cells. Western blot assay showed that the reduction of Cyclin E, Cyclin D1, CDK2, CDK4 and p-Rb levels after TCD treatment in AGS cells may paly critical roles in the G1 cell cycle arrest that blocked cell proliferation. TCD treatment resulted in an increase of Bax level and a decrease of Bcl-2. Similarly, caspase dependent poly (ADP) ribose polymerase (PARP) cleavage by TCD with which to induced apoptosis in AGS cells was observed. In addition, TCD activates the GRP78/ p-PERK/ATF-4/CHOP arm and p-JNK of endoplasmic reticulum (ER) stress. To evaluate the chemo-sensitizing potential of TCD, combination of TCD with SN-38 resulted in synergistic or additive cytotoxicity in all three gastric cancer cell lines type.

    Conclusion: TCD treatment increased GRP78 to activate unfolding protein response and induction of apoptosis, and caused cell-cycle arrest to inhibit gastric cancer cell proliferation. Our results suggest that TCD may be a promising candidate agent used in the treatment of gastric cancer. However, further work is still needed to investigate its chemo-sensitizing effect on chemotherapy drug-resistant gastric cancer cells.

    目錄 I 圖目錄 IV 表目錄 V 縮寫表 VI 第一章 文獻探討 1 第一節、胃癌的簡介 1 第二節、細胞生長與增殖 4 第三節、細胞凋亡之調控機制 7 第四節、化療藥物SN-38 12 第五節、苦瓜 13 第二章 研究動機與目的 18 第三章 材料與方法 20 第一節、活性物質TCD的製備 20 第二節、細胞培養與保存 21 第三節 細胞存活率分析(MTT) 23 第四節、流式細胞計數儀-細胞週期分析 24 第五節、流式細胞計數儀-細胞凋亡分析 25 第六節、西方點墨法 26 第七節、西方點墨法—試劑與抗體 28 第八節、統計分析 29 第四章 結果 30 第一節、TCD對胃癌細胞株AGS、MKN45、MKN28存活率 30 第二節、TCD使AGS cell細胞週期停滯 30 第三節、TCD引起AGS細胞週期停滯相關蛋白表現 30 第四節、TCD增加AGS cell細胞凋亡 34 第五節、TCD對AGS細胞凋亡相關蛋白表現 34 第六節、TCD對AGS內質網壓力相關蛋白表現 38 第七節、TCD對MKN45、MKN28內質網壓力相關蛋白表現 38 第八節、SN-38對胃癌細胞株AGS、MKN45、MKN28存活率之影響 41 第九節、TCD合併臨床藥物SN-38對胃癌細胞株 AGS、MKN45、MKN28存活率之影響 42 第十節、使用低劑量臨床藥物SN-38合併TCD具有加乘或協同效果 45 第十一節、TCD 合併SN-38對AGS cell細胞週期之影響 46 第十二節、TCD、SN-38促進AGS cell細胞凋亡 46 第五章 討論與結論 51 參考文獻 58

    趙涓含 (2017)-苦瓜三萜類化合物TCD 對人類胃癌 SAGS細胞的抗腫瘤效應及增加化學治療的敏感性。國立臺灣師範大學人類發展與家庭學系營養科學與教育組碩士論文。未出版
    黃文程(2015)- 生物活性導向分離鑑定山苦瓜緩解痤瘡丙酸桿菌誘導發炎反應之活性成分。國立臺灣師範大學人類發展與家庭學系營養科學與教育組博士論文。
    林于庭(2018)- 富含三萜類之山苦瓜葉萃取物對於四氯化碳誘導小鼠肝臟纖維化之保護效應。國立臺灣師範大學人類發展與家庭學系營養科學與教育組碩士論文。未出版
    衛生福利部國民健康署 -- 中華民國104年癌症登記報告 (2017) 網址: https://www.hpa.gov.tw/Pages/List.aspx?nodeid=119
    國家衛生研究院-胃癌臨床診療手冊(2012) 網址: http://www.nhri.org.tw/NHRI_ADM/userfiles/file/tcog/101gastricpg.pdf
    劉政道、李碩朋 (1995) 苦瓜。臺灣農家要覽增修訂再版。農作篇(二),p.399-404。 豐年社編印

    Abou-Ghali, M., & Stiban, J. (2015). Regulation of ceramide channel formation and disassembly: Insights on the initiation of apoptosis. Saudi Journal of Biological Sciences,22(6), 760-772.
    Ahmad, S. F., Pandey, A., Kour, K., & Bani, S. (2010). Downregulation of pro‐inflammatory cytokines by lupeol measured using cytometric bead array immunoassay. Phytotherapy Research, 24(1), 9-13.
    Alghasham, A. A. (2013). Cucurbitacins–a promising target for cancer therapy. International Journal of Health Sciences, 7(1), 77.
    Bai, L. Y., Chiu, C. F., Chu, P. C., Lin, W. Y., Chiu, S. J., & Weng, J. R. (2016). A triterpenoid from wild bitter gourd inhibits breast cancer cells. Scientific Reports, 6, 22419.
    Bao, B., Chen, Y. G., Zhang, L., Xu, Y. L. N., Wang, X., Liu, J., & Qu, W. (2013). Momordica charantia (Bitter Melon) reduces obesity-associated macrophage and mast cell infiltration as well as inflammatory cytokine expression in adipose tissues. PLoS One, 8(12), e84075.
    Bishayee, A., Ahmed, S., Brankov, N., & Perloff, M. (2011). Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Frontiers in Bioscience, 16, 980.
    Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424.
    Brown, L. M, Devesa, S. S (2002). Epidemiologic trends in esophageal and gastric cancer in the United States. Surgical Oncology Clinics of North America.11:235–56
    Budrat, P., & Shotipruk, A. (2009). Enhanced recovery of phenolic compounds from bitter melon (Momordica charantia) by subcritical water extraction. Separation and Purification Technology, 66(1), 125-129.
    Chen, J., Tian, R., Qiu, M., Lu, L., Zheng, Y., & Zhang, Z. (2008). Trinorcucurbitane and cucurbitane triterpenoids from the roots of Momordica charantia. Phytochemistry, 69(4), 1043-1048.
    Chen, Q., Kang, J., & Fu, C. (2018). The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduction and Targeted Therapy, 3(1), 18.
    Chen, S., Novick, P., & Ferro-Novick, S. (2013). ER structure and function. Current Opinion in Cell Biology, 25(4), 428-433.
    Chong, W., Shastri, M., & Eri, R. (2017). Endoplasmic reticulum stress and oxidative stress: a vicious nexus implicated in bowel disease pathophysiology. International Journal of Molecular Sciences, 18(4), 771.
    Chudzik, M., Korzonek-Szlacheta, I., & Król, W. (2015). Triterpenes as potentially cytotoxic compounds. Molecules, 20(1), 1610-1625.
    Dandawate, P. R., Subramaniam, D., Padhye, S. B. and Anant, S. (2016) Bitter melon: a panacea for inflammation and cancer. Chinese Journal of Natural Medicines., 14(2): 81–100.
    Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic Pathology, 35(4), 495-516.
    Fang, E. F., Zhang, C. Z. Y., Wong, J. H., Shen, J. Y., Li, C. H., & Ng, T. B. (2012). The MAP30 protein from bitter gourd (Momordica charantia) seeds promotes apoptosis in liver cancer cells in vitro and in vivo. Cancer Letters, 324(1), 66-74.
    Femke, M., Goey, A. K., van Schaik, R. H., Mathijssen, R. H., & Bins, S. (2018). Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clinical Pharmacokinetics, 57(10), 1229-1254.
    Feng, R., Zhai, W.L., Yang, H.Y., Jin, H. and Zhang, Q.X. (2011) Induction of ER stress protects gastric cancer cells against apoptosis induced by cisplatin and doxorubicin through activation of p38 MAPK. Biochemical and Biophysical Research Communications, 406, 299-304.
    Han, L., Wu, J. L., & Yang, L. X. (2012). Effect of combination of rapamycin and cisplatin on human cervical carcinoma Hela cells. Contemporary Oncology, 16(6), 512.
    Haque, S., Nawrot, D. A., Alakurtti, S., Ghemtio, L., Yli-Kauhaluoma, J., & Tammela, P. (2014). Screening and characterisation of antimicrobial properties of semisynthetic betulin derivatives. PloS One, 9(7), e102696.
    Hasnat, M., Pervin, M., & Lim, B. (2013). Acetylcholinesterase inhibition and in vitro and in vivo antioxidant activities of Ganoderma lucidum grown on germinated brown rice. Molecules, 18(6), 6663-6678.
    Henley, S. A., & Dick, F. A. (2012). The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Division, 7(1), 10.
    Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., ... & Guan, J. L. (2009). Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Molecular Biology of the Cell, 20(7), 1981-1991.
    Hosseini, A., & Ghorbani, A. (2015). Cancer therapy with phytochemicals: evidence from clinical studies. Avicenna Journal of Phytomedicine, 5(2), 84.
    Hoyo, C., Cook, M. B., Kamangar, F., Freedman, N. D., Whiteman, D. C., Bernstein, L., ... & Wu, A. H. (2012). Body mass index in relation to oesophageal and oesophagogastric junction adenocarcinomas: a pooled analysis from the International BEACON Consortium. International Journal of Epidemiology, 41(6), 1706-1718.
    Hsiao, P. C., Liaw, C. C., Hwang, S. Y., Cheng, H. L., Zhang, L. J., Shen, C. C., ... & Kuo, Y. H. (2013). Antiproliferative and hypoglycemic cucurbitane-type glycosides from the fruits of Momordica charantia. Journal of Agricultural and Food Chemistry, 61(12), 2979-2986.
    Hsu, H.Y., Lin, J.H., Li, C.J., Tsang, S.F., Tsai, C.H., Chyuan, J.H., Chiu, S.J., and Chuang, S.E. (2012) Antimigratory effects of the methanol extract from Momordica charantia on human lung adenocarcinom a CL1 Cells. Evidence-Based Complementary and Alternative Medicine, 2012 : 819632
    Hsu, S. K., Chiu, C. C., Dahms, H. U., Chou, C. K., Cheng, C. M., Chang, W. T., ... & Lin, I. (2019). Unfolded Protein Response (UPR) in Survival, Dormancy, Immunosuppression, Metastasis, and Treatments of Cancer Cells. International Journal of Molecular Sciences, 20(10), 2518.
    Hu, L. Y., Liu, C. J., Yeh, C. M., Lu, T., Hu, Y. W., Chen, T. J., Chen, P.M., Lee, S.C and Chang, C. H. (2018). Depressive disorders among patients with gastric cancer in Taiwan: a nationwide population-based study. BMC Psychiatry, 18(1), 272.
    Jia, S., Shen, M., Zhang, F., & Xie, J. (2017). Recent advances in Momordica charantia: functional components and biological activities. International Journal of Molecular Sciences, 18(12), 2555.
    Johnson, B. M., Radwan, F. F., Hossain, A., Doonan, B. P., Hathaway‐Schrader, J. D., God, J. M., ... & Haque, A. (2019). Endoplasmic reticulum stress, autophagic and apoptotic cell death, and immune activation by a natural triterpenoid in human prostate cancer cells. Journal of Cellular Biochemistry, 120(4), 6264-6276.
    Jones, V.S., Huang, R.Y., Chen, L.P., Chen, Z.S., Fu, L. and Huang, R.P. (2016) Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochimica et Biophysica Acta.1865(2): 255-265.
    Karimi, P., Islami, F., Anandasabapathy, S., Freedman, N. D., & Kamangar, F. (2014). Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiology and Prevention Biomarkers, 23(5), 700-713.
    Kaushik, U., Aeri, V., & Mir, S. (2015). Cucurbitacins an insight into medicinal leads from nature. Pharmacognosy Reviews, 9 (17), 12 18. doi: 10.4103/0973 7847.156314
    Keller, A. C., Ma, J., Kavalier, A., He, K., Brillantes, A. M. B., & Kennelly, E. J. (2011). Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine, 19(1), 32-37.
    Kiraz, Y., Adan, A., Yandim, M. K., & Baran, Y. (2016). Major apoptotic mechanisms and genes involved in apoptosis. Tumor Biology, 37(7), 8471-8486.
    Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P. H., & Peter, M. E. (1995). Cytotoxicity‐dependent APO‐1 (Fas/CD95) ‐associated proteins form a death‐inducing signaling complex (DISC) with the receptor. The EMBO Journal, 14(22), 5579-5588.
    Kroemer, G., El-Deiry, W. S., Golstein, P., Peter, M. E., Vaux, D., Vandenabeele, P., ... & Piacentini, M. (2005). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death and Differentiation, 12(12), 1463-1467.
    Kumar, R. K., Raj, S. S., Shankar, E. M., Ganapathy, E., Ebrahim, A. S., & Farooq, S. M. (2013). Gastric carcinoma: a review on epidemiology, current surgical and chemotherapeutic options. IntechOpen.
    Kwatra, D., Dandawate, P., Padhye, S., & Anant, S. (2016) Bitter melon as a therapy for diabetes, inflammation, and cancer: a panacea? Current Pharmacology Reports, 2(1): 34 44.
    Kwatra, D., Venugopal, A., Standing, D., Ponnurangam, S., Dhar, A., Mitra, A., & Anant, S. (2013). Bitter melon extracts enhance the activity of chemotherapeutic agents through the modulation of multiple drug resistance. Journal of Pharmaceutical Sciences, 102(12), 4444-4454.
    Lee, D. H., Iwanski, G. B., & Thoennissen, N. H. (2010). Cucurbitacin: ancient compound shedding new light on cancer treatment. The Scientific World Journal, 10, 413-418.
    Li, C.J., Tsang, S.F., Tsai, C.H., Tsai, H.Y., Chyuan, J.H., & Hsu, H.Y. (2012a). Momordica charantia extract induces apoptosis in human cancer cells through c aspase and mitochondria dependent pathways. Evidence-Based Complementary and Alternative Medicine, 2012, 261971. doi: 10.1155/2012/2 6197
    Li, H., Wang, Q. J., Zhu, D. N., & Yang, Y. (2008). Reinioside C, a triterpene saponin of Polygala aureocauda Dunn, exerts hypolipidemic effect on hyperlipidemic mice. Phytotherapy Research, 22(2), 159-164.
    Li, X. G., Paul Jr, H., Yaw-Huei, H., Ajit, K. B., Donald, W. K., Leroy, F. L., & Eric, H. R. (1996). Identification of topoisomerase I mutations affecting both DNA cleavage and interaction with camptothecin. Annals of the New York Academy of Sciences, 803: 111–127.
    Liaw, C. C., Huang, H. C., Hsiao, P. C., Zhang, L. J., Lin, Z. H., Hwang, S. Y., ... & Kuo, Y. H. (2015). 5β, 19-epoxycucurbitane triterpenoids from Momordica charantia and their anti-inflammatory and cytotoxic activity. Planta Medica, 81(01), 62-70.
    Ma, B., Zhang, H., Wang, Y., Zhao, A., Zhu, Z., Bao, X., ... & Zhang, Q. (2018). Corosolic acid, a natural triterpenoid, induces ER stress-dependent apoptosis in human castration resistant prostate cancer cells via activation of IRE-1/JNK, PERK/CHOP and TRIB3. Journal of Experimental & Clinical Cancer Research, 37(1), 210.
    Malhotra, J. D., & Kaufman, R. J. (2011). ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harbor Perspectives in Biolog, 3(9), a004424.
    Mayer, B., Klement, G., Kaneko, M., Man, S., Jothy, S., Rak, J., & Kerbel, R. S. (2001). Multicellular gastric cancer spheroids recapitulate growth pattern and differentiation phenotype of human gastric carcinomas. Gastroenterology, 121(4), 839-852.
    Meng, Y., Liu, S., Li, J., Meng, Y., & Zhao, X. (2012). Preparation of an antitumor and antivirus agent: chemical modification of α-MMC and MAP30 from Momordica Charantia L. with covalent conjugation of polyethyelene glycol. International Journal of Nanomedicine, 7, 3133.
    Muhammad, N., Steele, R., Isbell, T.S., Philips, N., and Ray, R.B. (2017) Bitter melon extract inhibits breast cancer growth in preclinical model by inducing autophagic cell death. Oncotarget, 8:66226-66236.
    Nazaruk, J., & Borzym-Kluczyk, M. (2015). The role of triterpenes in the management of diabetes mellitus and its complications. Phytochemistry Reviews, 14(4), 675-690.
    Orozco, S., & Oberst, A. (2017). RIPK 3 in cell death and inflammation: the good, the bad, and the ugly. Immunological Reviews, 277(1), 102-112.
    Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B., & Bao, J. K. (2012). Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Proliferation, 45(6), 487-498.
    Ozgur, R., Uzilday, B., Iwata, Y., Koizumi, N., & Turkan, I. (2018). Interplay between the unfolded protein response and reactive oxygen species: a dynamic duo. Journal of Experimental Botany, 69(14), 3333-3345.
    Pereira, W. O., & Amarante‐Mendes, G. P. (2011). Apoptosis: a programme of cell death or cell disposal?. Scandinavian Journal of Immunology, 73(5), 401-407.
    Pitchakarn, P., Suzuki, S., Ogawa, K., Pompimon, W., Takahashi, S., Asamoto, M., ... & Shirai, T. (2012). Kuguacin J, a triterpeniod from Momordica charantia leaf, modulates the progression of androgen-independent human prostate cancer cell line, PC3. Food and Chemical Toxicology, 50(3-4), 840-847.
    Pitchakarn, P., Suzuki, S., Ogawa, K., Pompimon, W., Takahashi, S., Asamoto, M., Limtrakul, P., & Shirai, T. (2011). Induction of G1 arrest and apoptosis in androgen-dependent human prostate cancer by Kuguacin J, a triterpenoid from Momordica charantia leaf. Cancer Letters, 306(2): 142-150.
    Prasad, V., Jain, V., Girish, D., & Dorle, A. K. (2006). Wound-healing property of Momordica charantia L. fruit powder. Journal of Herbal Pharmacotherapy, 6(3-4), 105-115.
    Puri, M., Kaur, I., Kanwar, R. K., Gupta, R. C., Chauhan, A., & Kanwar, J. R. (2009). Ribosome inactivating proteins (RIPs) from Momordica charantia for anti viral therapy. Current Molecular Medicine, 9(9), 1080-1094.
    Raina, K., Kumar, D., & Agarwal, R. (2016). Promise of bitter melon (Momordica charantia) bioactives in cancer prevention and therapy. Seminars in Cancer Biology, Vol. 40, pp. 116-129.
    Raish, M. (2017). Momordica charantia polysaccharides ameliorate oxidative stress, hyperlipidemia, inflammation, and apoptosis during myocardial infarction by inhibiting the NF-κB signaling pathway. International Journal of Biological Macromolecules, 97, 544-551.
    Rocha Gda, G., Oliveira, R.R., Kaplan, M.A. & Gattass, C.R. (2014) 3β-Acetyl tormentic acid reverts MRP1/ABCC1 mediated cancer resistance through modulation of intracellular levels of GSH and inhibition of GST activity. European Journal of Pharmacology 741: 140-149.
    Rosati, E., Sabatini, R., Rampino, G., De Falco, F., Di Ianni, M., Falzetti, F., ... & Marconi, P. (2010). Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL. Blood, 116(15), 2713-2723.
    Rutkowski, D. T., & Kaufman, R. J. (2004). A trip to the ER: coping with stress. Trends in Cell Biology, 14(1), 20-28.
    Scull, C. M., & Tabas, I. (2011). Mechanisms of ER stress-induced apoptosis in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(12), 2792-2797.
    Sharma, H., Parihar, L., & Parihar, P. (2011). Review on cancer and anticancerous properties of some medicinal plants. Journal of Medicinal Plants Research, 5(10), 1818-1835.
    Shoshan-Barmatz, V., De, S., & Meir, A. (2017). The mitochondrial voltage-dependent anion channel 1, Ca2+ transport, apoptosis, and their regulation. Frontiers in Oncology, 7, 60.
    Sitarz, R., Skierucha, M., Mielko, J., Offerhaus, G. J. A., Maciejewski, R., & Polkowski, W. P. (2018). Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Management and Research, 10, 239.
    Tan, M. J., Ye, J. M., Turner, N., Hohnen-Behrens, C., Ke, C. Q., Tang, C. P., ... & James, D. E. (2008). Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chemistry & Biology, 15(3), 263-273.
    Tsai, T. H., Huang, W. C., Ying, H. T., Kuo, Y. H., Shen, C. C., Lin, Y. K., & Tsai, P. J. (2016). Wild bitter melon leaf extract inhibits Porphyromonas gingivalis-induced inflammation: identification of active compounds through bioassay-guided isolation. Molecules, 21(4), 454.
    Vermeulen, K., Van Bockstaele, D. R., & Berneman, Z. N. (2003). The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Proliferation, 36(3), 131-149.
    Wang, M., Wey, S., Zhang, Y., Ye, R., & Lee, A. S. (2009). Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxidants & Redox Signaling, 11(9), 2307-2316.
    Wang, X., Sun, W., Cao, J., Qu, H., Bi, X., & Zhao, Y. (2012). Structures of new triterpenoids and cytotoxicity activities of the isolated major compounds from the fruit of Momordica charantia L. Journal of Agricultural and Food Chemistry, 60(15), 3927-3933.
    WCRF / AICR -- Diet, nutrition, physical active and stomch cancer (2018).
    Wei, Y., Pu, X., & Zhao, L. (2017). Preclinical studies for the combination of paclitaxel and curcumin in cancer therapy. Oncology Reports, 37(6), 3159-3166.
    Xu, X., Shan, B., Liao, C. H., Xie, J. H., Wen, P. W., & Shi, J. Y. (2015). Anti-diabetic properties of Momordica charantia L. polysaccharide in alloxan-induced diabetic mice. International Journal of Biological Macromolecules, 81, 538-543.
    Xu, Y., & Villalona-Calero, M. A. (2002). Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Annals of Oncology, 13(12), 1841-1851.
    Yoboue, E. D., Sitia, R., & Simmen, T. (2018). Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death & Disease, 9(3), 331.
    Yung, M.M., Ross, F.A., Hardie, D.G., Leung, T.H., Zhan, J., Ngan, H.Y., & Chan, D.W. (2015) Bitter melon (Momordica charantia) extract inhibits tumorigenicity and overcomes cisplatin-resistance in ovarian cancer cells through targeting AMPK signaling cascade. Integrative Cancer Therapies, 15(3):376-389.

    無法下載圖示 本全文未授權公開
    QR CODE