研究生: |
林祐霆 Lin, You-Ting |
---|---|
論文名稱: |
空間控制的三金屬奈米捕光器合成用於電漿增強的產氫反應 Synthesis of Spatial Controlled Trimetallic Nanozappers for Plasmon Boosted Hydrogen Evolution Reaction |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 金奈米棒 、金奈米雙三角錐 、金/銀-核/殼結構 、賈凡尼置換反應 、奈米 捕光器 、產氫反應 |
英文關鍵詞: | gold nanorods, gold nanobipyramids, Au/Ag-core/shell structure, galvanic replacement reaction, nanozappers, hydrogen evolution reaction |
DOI URL: | http://doi.org/10.6345/NTNU202000668 |
論文種類: | 學術論文 |
相關次數: | 點閱:239 下載:12 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氫是宇宙中含量最多的元素,同時也是能量密度最高且乾淨的能源,因此光催化產氫反應(HER)成為近年來熱門的研究議題,貴金屬奈米材料通常具有優異的催化活性,但高昂的成本限制了其發展,因此低成本、高活性的催化材料開發勢在必行。本實驗利用晶種成長法,以兩種不同的界面活性劑,溴化十六烷基三甲銨(CTAB)與檸檬酸鈉(Na3CA)合成晶種,控制生長條件合成出尺寸相近的金奈米棒(AuNRs)與金奈米雙三角錐(AuNBPs),再將金奈米棒與金奈米雙三角錐分散於氯化十六烷基三甲銨(CTAC)的環境下,加入硝酸銀(AgNO3)及弱還原劑抗壞血酸(AA),將銀離子還原在金奈米粒子表面,形成金/銀-核/殼結構,利用賈凡尼置換反應,將鉑與銀進行置換還原至金/銀-核/殼結構表面,合成出三金屬奈米補光器。以TEM圖型研究此奈米結構的變化與差異,吸收光譜的調控可以從可見光到近紅外光的範圍。透過能量色散X射線譜元素面分析確認元素分布情形,以及使用感應偶合電漿質譜儀(ICP-MS)進行元素定量分析。將這三金屬奈米補光器(0.0192毫克的鉑負載量)應用於光催化產氫反應,照光後過電位降低約0.045 V。證明我們的三金屬奈米補光器有優異的光催化活性。
Hydrogen is the most abundant element in the universe, and it is also a clean energy with the highest specific energy. Recently, photocatalytic hydrogen evolution reaction (HER) has become a popular study. Noble metal nanomaterials have excellent catalytic activity, but their potential and application are limited by high cost. Therefore, there is an urgent need to develop low-cost and high-activity catalytic materials. In this work, two different surfactants, cetyltrimethylammonium bromide (CTAB) and sodium citrate, were used to synthesize the seed solutions for the further controlled growth of gold nanorods (AuNRs) and gold nanobipyramids (AuNBPs) with similar size. The as-prepared AuNRs and AuNBPs were dispersed into mixture containing CTAC and silver nitrate, and subsequently the weak reduction agent ascorbic acid was added to reduce silver ions onto the surface of gold nanoparticles to form the Au/Ag-core-shell nanostructures. For the synthesis of trimetallic nanozappers, galvanic replacement reaction was applied to replace the Ag atoms on the Au/Ag-core/shell nanostructures with the Pt ions. The shape evolution of the trimetallic nanozappers was observed by TEM images, and the corresponding UV-Vis absorption can be adjusted from visible to near-infrared range. Element distribution and element quantitative analysis were confirmed by energy-dispersive X-ray spectroscopy mapping and inductively coupled plasma mass spectrometry, respectively. Applying the synthesized trimetallic nanozappers (only contain 0.0192 mg Pt) to photocatalytic HER, the overpotential dropped significantly to 0.045 V under light irradiation. Our results show that the usage of trimetallic nanozappers has excellent plasmon enhanced photocatalytic activity.
1. 牟中原; 陳家俊, 奈米材料研究發展. 科學發展 2000, 4 (8),281-288.
2. Edvinsson, T., Optical quantum confinement and photocatalytic properties in two-, one- and zero-dimensional nanostructures. R Soc Open Sci 2018, 5 (9), 180387.
3. Hulla, J. E.; Sahu, S. C.; Hayes, A. W., Nanotechnology: History and future. Hum Exp Toxicol 2015, 34 (12), 1318-1321.
4. Cao, J.; Sun, T.; Grattan, K. T. V., Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sensors and Actuators B: Chemical 2014, 195, 332-351.
5. Wu, B.; Liu, D.; Mubeen, S.; Chuong, T. T.; Moskovits, M.; Stucky, G. D., Anisotropic Growth of TiO2 onto Gold Nanorods for Plasmon-Enhanced Hydrogen Production from Water Reduction. J Am Chem Soc 2016, 138 (4), 1114-1147.
6. Kuo, T.-R.; Lee, Y.-C.; Chou, H.-L.; M G, S.; Wei, C.-Y.; Wen, C.-Y.; Chang, Y.-H.; Pan, X.-Y.; Wang, D.-Y., Plasmon-Enhanced Hydrogen Evolution on Specific Facet of Silver Nanocrystals. Chemistry of Materials 2019, 31 (10), 3722-3728.
7. Yu, S.; Wilson, A. J.; Heo, J.; Jain, P. K., Plasmonic Control of Multi-Electron Transfer and C-C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles. Nano Lett 2018, 18 (4), 2189-2194.
8. Wang, F.; Li, C.; Chen, H.; Jiang, R.; Sun, L. D.; Li, Q.; Wang, J.; Yu, J. C.; Yan, C. H., Plasmonic harvesting of light energy for Suzuki coupling reactions. J Am Chem Soc 2013, 135 (15), 5588-5601.
9. Zheng, Z.; Tachikawa, T.; Majima, T., Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J Am Chem Soc 2014, 136 (19), 6870-6873.
10. Yin, Y.; Yang, Y.; Zhang, L.; Li, Y.; Li, Z.; Lei, W.; Ma, Y.; Huang, Z.,
48
Facile synthesis of Au/Pd nano-dogbones and their plasmon-enhanced visible-to-NIR light photocatalytic performance. RSC Advances 2017, 7 (59), 36923-36928.
11. Nedrygailov, II; Moon, S. Y.; Park, J. Y., Hot electron-driven electrocatalytic hydrogen evolution reaction on metal-semiconductor nanodiode electrodes. Sci Rep 2019, 9 (1), 6208.
12. Zhang, H. X.; Li, Y.; Li, M. Y.; Zhang, H.; Zhang, J., Boosting electrocatalytic hydrogen evolution by plasmon-driven hot-electron excitation. Nanoscale 2018, 10 (5), 2236-2241.
13. Shi, Y.; Wang, J.; Wang, C.; Zhai, T. T.; Bao, W. J.; Xu, J. J.; Xia, X. H.; Chen, H. Y., Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J Am Chem Soc 2015, 137 (23), 7365-7370.
14. Liu, K.-K.; Tadepalli, S.; Tian, L.; Singamaneni, S., Size-Dependent Surface Enhanced Raman Scattering Activity of Plasmonic Nanorattles. Chemistry of Materials 2015, 27 (15), 5261-5270.
15. Singh, P.; Konig, T. A. F.; Jaiswal, A., NIR-Active Plasmonic Gold Nanocapsules Synthesized Using Thermally Induced Seed Twinning for Surface-Enhanced Raman Scattering Applications. ACS Appl Mater Interfaces 2018, 10 (45), 39380-39390.
16. Zhang, T.; Gao, N.; Li, S.; Lang, M. J.; Xu, Q. H., Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami. J Phys Chem Lett 2015, 6 (11), 2043-2049.
17. Yin, D.; Li, X.; Ma, Y.; Liu, Z., Targeted cancer imaging and photothermal therapy via monosaccharide-imprinted gold nanorods. Chem Commun (Camb) 2017, 53 (50), 6716-6719.
18. Feng, J.; Chen, L.; Xia, Y.; Xing, J.; Li, Z.; Qian, Q.; Wang, Y.; Wu, A.; Zeng, L.; Zhou, Y., Bioconjugation of Gold Nanobipyramids for SERS Detection and Targeted Photothermal Therapy in Breast Cancer. ACS Biomaterials Science & Engineering 2017, 3 (4), 608-618.
49
19. Wi, J. S.; Park, J.; Kang, H.; Jung, D.; Lee, S. W.; Lee, T. G., Stacked Gold Nanodisks for Bimodal Photoacoustic and Optical Coherence Imaging. ACS Nano 2017, 11 (6), 6225-6232.
20. Ye, X.; Jin, L.; Caglayan, H.; Chen, J.; Xing, G.; Zheng, C.; Doan-Nguyen, V.; Kang, Y.; Engheta, N.; Kagan, C. R.; Murray, C. B., Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives. ACS Nano 2012, 6, 2804-2817.
21. Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C. B., Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett 2013, 13 (2), 765-771.
22. Chang, H. H.; Murphy, C. J., Mini Gold Nanorods with Tunable Plasmonic Peaks beyond 1000 nm. Chem Mater 2018, 30 (4), 1427-1435.
23. Vigderman, L.; Zubarev, E. R., High-Yield Synthesis of Gold Nanorods with Longitudinal SPR Peak Greater than 1200 nm Using Hydroquinone as a Reducing Agent. Chemistry of Materials 2013, 25 (8), 1450-1457.
24. Li, Q.; Zhuo, X.; Li, S.; Ruan, Q.; Xu, Q. H.; Wang, J., Production of Monodisperse Gold Nanobipyramids with Number Percentages Approaching 100% and Evaluation of Their Plasmonic Properties. Advanced Optical Materials 2015, 6, 801-812.
25. Lee, S.; Mayer, K. M.; Hafner, J. H., Improved Localized Surface Plasmon Resonance Immunoassay with Gold Bipyramid Substrates. Anal. Chem. 2009, 81, 4450-4455.
26. Lidor-Shalev, O.; Elani, Z., Controlled Crystallization of Gold Nanocrystals. In Advanced Topics in Crystallization, 2015.
27. Grzelczak, M.; Perez-Juste, J.; Mulvaney, P.; Liz-Marzan, L. M., Shape control in gold nanoparticle synthesis. Chem Soc Rev 2008, 37 (9), 1783-1791.
28. Personick, M. L.; Langille, M. R.; Zhang, J.; Mirkin, C. A., Shape control of gold nanoparticles by silver underpotential deposition. Nano Lett 2011, 11 (8), 3394-3398.
50
29. Rodrı´guez-Ferna´ndez, J.; Pe´rez-Juste, J.; Mulvaney, P.; Liz-Marza´n, L. M., Spatially-Directed Oxidation of Gold Nanoparticles by Au(III)-CTAB Complexes. J. Phys. Chem. B 2005, 109, 14257-14261.
30. Tebbe, M.; Kuttner, C.; Mayer, M.; Maennel, M.; Pazos-Perez, N.; Konig, T. A.; Fery, A., Silver-Overgrowth-Induced Changes in Intrinsic Optical Properties of Gold Nanorods: From Noninvasive Monitoring of Growth Kinetics to Tailoring Internal Mirror Charges. J Phys Chem C Nanomater Interfaces 2015, 119 (17), 9513-9523.
31. Zhu, X. Z. X.; Li, Q.; Yang, Z.; Wang, J., Gold Nanobipyramid-Directed Growth of Length-Variable Silver Nanorods with Multipolar Plasmon Resonances. ACS Nano 2015, 9, 7523-7535.
32. Jiang, R.; Chen, H.; Shao, L.; Li, Q.; Wang, J., Unraveling the evolution and nature of the plasmons in (Au core)-(Ag shell) nanorods. Adv Mater 2012, 24 (35), OP200-207.
33. Hsia, C.-F.; Madasu, M.; Huang, M. H., Aqueous Phase Synthesis of Au–Cu Core–Shell Nanocubes and Octahedra with Tunable Sizes and Noncentrally Located Cores. Chemistry of Materials 2016, 28 (9), 3073-3079.
34. Lyu, Z.; Xie, M.; Aldama, E.; Zhao, M.; Qiu, J.; Zhou, S.; Xia, Y., Au@Cu Core–Shell Nanocubes with Controllable Sizes in the Range of 20–30 nm for Applications in Catalysis and Plasmonics. ACS Applied Nano Materials 2019, 2 (3), 1533-1540.
35. Su, G.; Jiang, H.; Zhu, H.; Lv, J. J.; Yang, G.; Yan, B.; Zhu, J. J., Controlled deposition of palladium nanodendrites on the tips of gold nanorods and their enhanced catalytic activity. Nanoscale 2017, 9 (34), 12494-12502.
36. Ye, R.; Zhang, Y.; Chen, Y.; Tang, L.; Wang, Q.; Wang, Q.; Li, B.; Zhou, X.; Liu, J.; Hu, J., Controlling Shape and Plasmon Resonance of Pt-Etched Au@Ag Nanorods. Langmuir 2018, 34 (20), 5719-5727.
37. González, E.; Arbiol, J.; Puntes, V. F., Carving at the Nanoscale Sequential Galvanic Exchange and Kirkendall Growth at Room Temperature. SCIENCE 2011.
51
38. Yen, H.-C.; Su, M.-N.; Liu, Y.-C.; Lee, M.-W.; Sheu, Y.-L.; Hsu, L.-Y.; Chen, C.-C., Design of Plasmon Resonance Shifts by the Galvanic Replacement Degree of Au–Ag Nanozappers. The Journal of Physical Chemistry C 2019, 123 (48), 29298-29305.
39. Yang, X.; Roling, L. T.; Vara, M.; Elnabawy, A. O.; Zhao, M.; Hood, Z. D.; Bao, S.; Mavrikakis, M.; Xia, Y., Synthesis and Characterization of Pt-Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction. Nano Lett 2016, 16 (10), 6644-6649.
40. Hajfathalian, M.; Gilroy, K. D.; Golze, S. D.; Yaghoubzade, A.; Menumerov, E.; Hughes, R. A.; Neretina, S., A Wulff in a Cage: The Confinement of Substrate-Based Structures in Plasmonic Nanoshells, Nanocages, and Nanoframes Using Galvanic Replacement. ACS Nano 2016, 10 (6), 6354-6362.
41. Li, H.; Wu, H.; Zhai, Y.; Xu, X.; Jin, Y., Synthesis of Monodisperse Plasmonic Au Core–Pt Shell Concave Nanocubes with Superior Catalytic and Electrocatalytic Activity. ACS Catalysis 2013, 3 (9), 2045-2051.
42. Xiong, W.; Mazid, R.; Yap, L. W.; Li, X.; Cheng, W., Plasmonic caged gold nanorods for near-infrared light controlled drug delivery. Nanoscale 2014, 6 (23), 14388-14393.
43. Hydrogen for Large-scale Electricity Generation in USA.
44. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355 (6321).
45. Scarabelli, L.; Sánchez-Iglesias, A.; Pérez-Juste, J.; Liz-Marzán, L. M., A “Tips and Tricks” Practical Guide to the Synthesis of Gold Nanorods. The Journal of Physical Chemistry Letters 2015, 6 (21), 4270-4279.