簡易檢索 / 詳目顯示

研究生: 陳潔玲
Chen, Jie-Ling
論文名稱: PS128精神益生菌對於阿茲海默氏症小鼠模式的效益及其作用機制
The effects and mechanisms of PS128 psycho-biotic supplementation in Alzheimer’s disease mouse model
指導教授: 謝秀梅
Hsieh, Hsiu-Mei
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 82
中文關鍵詞: 阿茲海默氏症PS128精神益生菌三基因轉殖鼠鏈脲黴素認知
英文關鍵詞: Alzheimer’s disease, PS128 psychobiotic, 3×Tg-AD, streptozotocin, cognition
DOI URL: http://doi.org/10.6345/NTNU201901143
論文種類: 學術論文
相關次數: 點閱:275下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著高齡社會的到來,失智症人數急遽增加,其中阿茲海默氏症是失智症中最常見的類型。大量的β類澱粉蛋白質(Aβ)與Tau蛋白質過度磷酸化堆積是阿茲海默氏症最主要的病理特徵,然而目前不論針對Aβ或是tau的處理仍無法有效治療方式;因此迫切需要開發新的治療策略以因應當前全球最棘手的阿茲海默氏症。依據腸腦(gut-brain axis)雙向影響的原理,先前研究發現口服益生菌可避免或是延緩因壓力或是腦室急性注射Aβ的方式造成認知功能的受損;然而其所使用的動物模式,都無法代表典型的阿茲海默氏症動物模式。另外,台灣本土發現的PS128精神益生菌可以減少因壓力產生的焦慮、憂鬱與周邊發炎反應等正向效果。因此本研究將使用偶發型與家族型兩種阿茲海默氏症動物模式探討PS128精神益生菌於認知功能的成效,進而探討其作用的分子機制。本研究將用6個月大的3×Tg-AD (三基因轉殖鼠)與C57BL/6J公鼠於側腦室急性注射STZ 4 μl (Streptozotocin; 鏈脲黴素)或是生理食鹽水,注射前7天起小鼠接受每天管餵一次PS128 100 μl (10^10 CFU/ml)或vehicle處理,連續給予33天。首先,我們發現3×Tg-AD小鼠相較於同齡的B6小鼠其空間學習能力較差,而且其膽鹼性神經元數量也大幅地減少。另外,我們也發現前處理PS128能避免B6或3×Tg-AD小鼠因急性側腦室注射STZ造成的認知功能缺陷並且伴隨著減少AD相關病理特徵,包括Aβ的堆積、神經發炎反應, BACE1蛋白質表現量上升與認知功能相關腦區神經元數量減損等,因此此研究揭露PS128益生菌對於阿茲海默氏症的治療潛力。

    Alzheimer's disease ( AD ) is the major type of dementia and AD patients are increased dramatically with the fast growing of aging population. The pathological hallmarks of AD are amyloid-β ( Aβ ) plaques and neurofibrillary tangles ( NFTs ) formed by aggregated hyperphosphorylated tau protein. However, the treatments using strategies of anti-Aβ or anti-tau phosphorylation still face challenges in clinical trials. Thus, there is an urgent need to explore novel therapeutic strategy in AD. Based on the hypothesis of gut-brain bidirectional axis, the consumption of probiotics prevents or delays the cognitive impairment induced by stress or intracerebroventricular Aβ injection. However, typical AD animal models were not tested in above probiotic studies. PS128 psychobiotic identified in Taiwan has showed beneficial effects on anti-anxiety, -depression, and -inflammation in stressed mice. Therefore, we evaluated the effects and molecular mechanisms of PS128 psycho-biotic supplementation in two AD animal models, the early-onset family AD ( FAD ) and sporadic AD ( SAD ). In the study, an acute intracerebroventricular streptozotocin ( icv-STZ; 3 mg/kg, 4 μl ) or saline was administrated in tripe transgenic AD ( 3×Tg-AD mice, as a model of FAD ) and C57BL/6J ( B6; as a model of SAD) male mice at 6 months old. Before STZ injection, all mice received PS128 or vehicle 100 μl ( 10^10 CFU/ml, orally gavage, once per day ) for total 33 days. At first, we found that a worse spatial learning curve and less cholinergic neurons were shown in 3×Tg-AD mice compared to B6 mice. In addition, pretreatment PS128 psychobiotic prevetnted icv-STZ induced cognitive dysfunction associated with decreasing of AD pathological features, including Aβ deposition, gliosis, BACE1 protein expression levels, and cognitive related neuronal loss. Therefore, the pretreatment PS128 psychobiotic could be a potential therapeutic strategy in AD.

    目錄 i 中文摘要 vii Abstract ix 縮寫表 xi 1-研究背景 1 1.1 阿茲海默氏症(Alzheimer’s disease, AD) 1 1.2 AD假說 1 1.3 SAD model 4 1.4 FAD model 5 1.5 腸腦軸(gut-brain axis) 6 1.6 短鏈脂肪酸(short-chain fatty acids, SCFAs) 6 1.7 益生菌與AD治療 7 1.8 PS128 ( Lactobacillus plantarum PS128 ) 7 2-動機與目的 9 3-材料與方法 11 3.1 動物 11 3.2 實驗設計 11 3.3 立體定位手術 12 3.4 曠野實驗(Open field test, OFT) 13 3.5 高架十字迷宮(Elevated plus maze ,EPM) 13 3.6 Y字迷宮(Y maze) 14 3.7 莫瑞氏水迷宮(Morris water maze ,MWM) 15 3.8 糞便短鏈脂肪酸(SCFA)分析 16 3.9 免疫組織化學染色(Immunohistochemistry) 17 3.10 西方墨點法(Western blot) 19 3.11 統計分析(Statistical analysis) 20 4-結果 21 4.1 急性側腦室STZ注射對於小鼠的血糖無顯著影響 21 4.2 前處理PS128或急性側腦室注射STZ(icv-STZ)處理對於小鼠的焦慮和運動能力均無影響 21 4.3 前處理PS128避免小鼠因急性側腦室注射STZ造成的短期記憶傷害 22 4.4 前處理PS128 避免小鼠因急性側腦室注射STZ造成的空間認知功能障礙 23 4.5 前處理PS128避免小鼠因急性側腦室STZ造成之海馬迴CA1區神經元內Aβ堆積的增加 25 4.6 前處理PS128避免小鼠接受急性側腦室STZ造成之認知功能相關區域神經元數量減損的問題 26 4.7 前處理PS128避免小鼠接受急性側腦室STZ所導致的神經發炎反應 29 4.8 前處理PS128藉由減少BACE1蛋白質表現量而減少3xTg-AD小鼠接受STZ造成之海馬迴Aβ的堆積 30 4.9 前處理PS128避免3xTg-AD小鼠因接受急性側腦室STZ所導致之GSK3β活化 31 4.10 小鼠接受急性側腦室STZ對於其突觸蛋白表現量無顯著影響 33 4.11 處理PS128避免接受急性側腦室STZ的3xTg-AD小鼠糞便中短鏈脂肪酸濃度增加 33 5-討論 35 6-參考文獻 39

    Abdelli LS, Samsam A, Naser SA (2019) Propionic Acid Induces Gliosis and Neuro-inflammation through Modulation of PTEN/AKT Pathway in Autism Spectrum Disorder. Sci Rep 9:8824.
    Abraham D, Feher J, Scuderi GL, Szabo D, Dobolyi A, Cservenak M, Juhasz J, Ligeti B, Pongor S, Gomez-Cabrera MC, Vina J, Higuchi M, Suzuki K, Boldogh I, Radak Z (2019) Exercise and probiotics attenuate the development of Alzheimer's disease in transgenic mice: Role of microbiome. Exp Gerontol 115:122-131.
    An Y, Varma VR, Varma S, Casanova R, Dammer E, Pletnikova O, Chia CW, Egan JM, Ferrucci L, Troncoso J, Levey AI, Lah J, Seyfried NT, Legido-Quigley C, O'Brien R, Thambisetty M (2018) Evidence for brain glucose dysregulation in Alzheimer's disease. Alzheimer's & Dementia 14:318-329.
    Athari Nik Azm S, Djazayeri A, Safa M, Azami K, Djalali M, Sharifzadeh M, Vafa M (2017) Probiotics improve insulin resistance status in an experimental model of Alzheimer's disease. Med J Islam Repub Iran 31:103.
    Bergman EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. . Physiol Rev 70:567-590.
    Berni Canani R, Di Costanzo M, Leone L (2012) The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clinical epigenetics 4:4-4.
    Blonz ER (2017.) Alzheimer's Disease as the Product of a Progressive Energy Deficiency Syndrome in the
    Central Nervous System:The Neuroenergetic Hypothesis. J Alzheimers Dis 60:1223-1229.
    Bonfili L, Cecarini V, Cuccioloni M, Angeletti M, Berardi S, Scarpona S, Rossi G, Eleuteri AM (2018) SLAB51 Probiotic Formulation Activates SIRT1 Pathway Promoting Antioxidant and Neuroprotective Effects in an AD Mouse Model. Mol Neurobiol 55:7987-8000.
    Cahill GF Jr, RL. V (2003) Ketoacids? Good medicine? Trans Am Clin Climatol Assoc 114:149‐161; discussion 162‐143.
    Cassimeris L (2009) Microtubule Associated Proteins in Neurons. In: Encyclopedia of Neuroscience(Squire, L. R., ed), pp 865-870 Oxford: Academic Press.
    Chen J, Long Z, Li Y, Luo M, Luo S, He G (2019) Alteration of the Wnt/GSK3beta/betacatenin signalling pathway by rapamycin ameliorates pathology in an Alzheimer's disease model. Int J Mol Med 44:313-323.
    Chen Y, Liang Z, Tian Z, Blanchard J, Dai CL, Chalbot S, Iqbal K, Liu F, Gong CX (2014) Intracerebroventricular streptozotocin exacerbates Alzheimer-like changes of 3xTg-AD mice. Molecular neurobiology 49:547-562.
    de la Monte SM, M. Tong (2014) Brain metabolic dysfunction at the core of Alzheimer's disease. Biochem Pharmacol 88:548‐559.
    del Ser T S, hs KC, Gertz HJ, Andrés MV, Gómez-Carrillo B, Medina M, Vericat JA, Redondo P, Fleet D LT (2013) Treatment of Alzheimer's disease with the GSK-3 inhibitor tideglusib: a pilot study. J Alzheimers Dis 33:201-215.
    Erol A (2008) An integrated and unifying hypothesis for the metabolic basis of sporadic Alzheimer's disease. J Alzheimers Dis 13:241-253.
    Essawy AE, Abdou HM, Ibrahim HM, Bouthahab NM (2019) Soybean isoflavone ameliorates cognitive impairment, neuroinflammation, and amyloid β accumulation in a rat model of Alzheimer’s disease. Environmental Science and Pollution Research.
    Frost GR, Li YM (2017) The role of astrocytes in amyloid production and Alzheimer's disease. Open Biol 7.
    Gilbert BJ (2013) The role of amyloid β in the pathogenesis of Alzheimer's disease. Journal of Clinical Pathology 66:362.
    Glenner GG, Wong CW (1984) Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. . Biochem Biophys Res Commun 120:885-890.
    Grieb P (2016) Intracerebroventricular Streptozotocin Injections as a Model of Alzheimer's Disease: in Search of a Relevant Mechanism. Mol Neurobiol 53:1741-1752.
    Grunblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101:757-770.
    Hill JM, Lukiw WJ (2015) Microbial-generated amyloids and Alzheimer's disease (AD). Frontiers in aging neuroscience 7:9-9.
    Hong S, Dissing-Olesen L, Stevens B (2016) New insights on the role of microglia in synaptic pruning in health and disease. Current Opinion in Neurobiology 36:128-134.
    Hooper PL, Durham HD, Torok Z, Hooper PL, Crul T, Vigh L (2016) The central role of heat shock factor 1 in synaptic fidelity and memory consolidation. Cell Stress Chaperones 21:745-753.
    Iqbal K, Grundke-Iqbal I (2010) Alzheimer's disease, a multifactorial disorder seeking multitherapies. Alzheimer's & dementia : the journal of the Alzheimer's Association 6:420-424.
    Kamat P (2015) Streptozotocin induced Alzheimer's disease like changes and the underlying neural degeneration and regeneration mechanism. Neural Regeneration Research 10:1050-1052.
    Kaytor MD, Orr HT (2002) The GSK3 beta signaling cascade and neurodegenerative disease. Curr Opin Neurobiol 12:275-278.
    Kennedy PJ, Cryan JF, Dinan TG, Clarke G (2014) Irritable bowel syndrome: a microbiome-gut-brain axis disorder? World journal of gastroenterology 20:14105-14125.
    Kobayashi Y, Sugahara H, Shimada K, Mitsuyama E, Kuhara T, Yasuoka A, Kondo T, Abe K, Xiao J-z (2017) Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Scientific Reports 7:13510.
    Kong Y, Jiang B, Luo X (2018) Gut microbiota influences Alzheimer's disease pathogenesis by regulating acetate in Drosophila model. Future Microbiol 13:1117-1128.
    Lin F, Jia J, Qin W (2014) Enhancement of beta-amyloid oligomer accumulation after intracerebroventricular injection of streptozotocin, which involves central insulin signaling in a transgenic mouse model. Neuroreport 25:1289-1295.
    Liu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Signal transduction and targeted therapy 2:17023.
    Liu W-H, Chuang H-L, Huang Y-T, Wu C-C, Chou G-T, Wang S, Tsai Y-C (2016a) Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice. Behavioural Brain Research 298:202-209.
    Liu Y-W, Liu W-H, Wu C-C, Juan Y-C, Wu Y-C, Tsai H-P, Wang S, Tsai Y-C (2016b) Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve adult mice. Brain Research 1631:1-12.
    Ly PT, Wu Y, Zou H, Wang R, Zhou W, Kinoshita A, Zhang M, Yang Y, Cai F, Woodgett J, Song W (2013) Inhibition of GSK3beta-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest 123:224-235.
    Lyness SA, Zarow C, Chui HC (2003) Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease: a meta-analysis. Neurobiol Aging 24:1-23.
    Mayer EA (2011) Gut feelings: the emerging biology of gut‐brain communication. . Nat Rev Neurosci, 12:453-466.
    McGeer PL, McGeer EG (2015) Targeting microglia for the treatment of Alzheimer’s disease. Expert Opinion on Therapeutic Targets 19:497-506.
    Meyer D, Bonhoeffer T, Scheuss V (2014) Balance and stability of synaptic structures during synaptic plasticity. Neuron 82:430-443.
    Mohammadi G, Dargahi L, Peymani A, Mirzanejad Y, Alizadeh SA, Naserpour T, Nassiri-Asl M (2019) The Effects of Probiotic Formulation Pretreatment (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) on a Lipopolysaccharide Rat Model. J Am Coll Nutr 38:209-217.
    Mosconi L, Sorbi S, de Leon MJ, Li Y NB, Myoung PS, Tsui W, Ginestroni A, Bessi V, Fayyazz M, Caffarra P, A. P ( 2006) Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer's disease. J Nucl Med 47:1778-1786.
    Murphy MP, LeVine H, 3rd (2010) Alzheimer's disease and the amyloid-beta peptide. J Alzheimers Dis 19:311-323.
    Nimgampalle M, Kuna Y (2017) Anti-Alzheimer Properties of Probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer's Disease induced Albino Rats. J Clin Diagn Res 11:KC01-KC05.
    Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, Gaynor K, Wang L, LaFrancois J, Feinstein B, Burns M, Krishnamurthy P, Wen Y, Bhat R, Lewis J, Dickson D, Duff K (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci U S A 102:6990-6995.
    Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, FM. L (2003) Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409-421.
    Pajak B, Songin M, Strosznajder JB, Gajkowska B (2009) Alzheimer's disease genetic mutation evokes ultrastructural alterations: correlation to an intracellular Abeta deposition and the level of GSK-3beta-P(Y216) phosphorylated form. Neurotoxicology 30:581-588.
    Park SJ, Kim YH, Nam GH, Choe SH, Lee SR, Kim SU, Kim JS, Sim BW, Song BS, Jeong KJ, Lee Y, Park YI, Lee KM, Huh JW, Chang KT (2015) Quantitative expression analysis of APP pathway and tau phosphorylation-related genes in the ICV STZ-induced non-human primate model of sporadic Alzheimer's disease. Int J Mol Sci 16:2386-2402.
    Plaschke K, Kopitz J, Siegelin M, Schliebs R, Salkovic-Petrisic M, Riederer P, Hoyer S (2010) Insulin-resistant brain state after intracerebroventricular streptozotocin injection exacerbates Alzheimer-like changes in Tg2576 AbetaPP-overexpressing mice. J Alzheimers Dis 19:691-704.
    Rossner S, Lange-Dohna C, Zeitschel U, Perez-Polo JR (2005) Alzheimer's disease beta-secretase BACE1 is not a neuron-specific enzyme. J Neurochem 92:226-234.
    Sakakibara Y, Sekiya M, Saito T, Saido TC, Iijima KM (2019) Amyloid-β plaque formation and reactive gliosis are required for induction of cognitive deficits in App knock-in mouse models of Alzheimer's disease. BMC neuroscience 20:13-13.
    Sherwin E, Dinan TG, Cryan JF (2018) Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann N Y Acad Sci 1420:5-25.
    Sochocka M, Donskow-Lysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J (2019) The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer's Disease-a Critical Review. Mol Neurobiol 56:1841-1851.
    Songin M, Jesko H, Czapski G, Adamczyk A, Strosznajder RP (2007) GSK-3beta and oxidative stress in aged brain. Role of poly(ADP- -ribose) polymerase-1. Folia Neuropathol 45:220-229.
    Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR T, avares R, Xu XJ, Wands JR, SM. dlM ( 2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease--is this type 3 diabetes? J Alzheimers Dis 7:63-80.
    Tamtaji OR, Heidari-Soureshjani R, Mirhosseini N, Kouchaki E, Bahmani F, Aghadavod E, Tajabadi-Ebrahimi M, Asemi Z (2018) Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer's disease: A randomized, double-blind, controlled trial. Clin Nutr.
    Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, Guyonnet D, Legrain-Raspaud S, Trotin B, Naliboff B, Mayer EA (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144:1394-1401.e14014.
    Xu J, Begley P, Church SJ, Patassini S, McHarg S, Kureishy N, Hollywood KA, Waldvogel HJ, Liu H, Zhang S, Lin W, Herholz K, Turner C, Synek BJ, Curtis MA, Rivers-Auty J, Lawrence CB, Kellett KAB, Hooper NM, Vardy ERLC, Wu D, Unwin RD, Faull RLM, Dowsey AW, Cooper GJS (2016) Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer's disease: metabolic basis for dementia. Scientific reports 6:27524-27524.
    Yamamoto N, Fujii Y, Kasahara R, Tanida M, Ohora K, Ono Y, Suzuki K, Sobue K (2016) Simvastatin and atorvastatin facilitates amyloid beta-protein degradation in extracellular spaces by increasing neprilysin secretion from astrocytes through activation of MAPK/Erk1/2 pathways. Glia 64:952-962.
    Yin C, Deng Y, Gao J, Li X, Liu Y, Gong Q (2016) Icariside II, a novel phosphodiesterase-5 inhibitor, attenuates streptozotocin-induced cognitive deficits in rats. Neuroscience 328:69-79.
    Yu G, Lin T, Jin-Tai Y, Lan T (2018) Tau in Alzheimer's Disease: Mechanisms and Therapeutic Strategies. Current Alzheimer Research 15:283-300.
    Zhang B, Gaiteri C, Bodea L-G, Wang Z, McElwee J, Podtelezhnikov AA, Zhang C, Xie T, Tran L, Dobrin R, Fluder E, Clurman B, Melquist S, Narayanan M, Suver C, Shah H, Mahajan M, Gillis T, Mysore J, MacDonald ME, Lamb JR, Bennett DA, Molony C, Stone DJ, Gudnason V, Myers AJ, Schadt EE, Neumann H, Zhu J, Emilsson V (2013) Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell 153:707-720.
    Zhang L, Wang Y, Xiayu X, Shi C, Chen W, Song N, Fu X, Zhou R, Xu YF, Huang L, Zhu H, Han Y, C Q (2017) Altered Gut Microbiota in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 60:1241-1257.

    下載圖示
    QR CODE