簡易檢索 / 詳目顯示

研究生: 蔡孟辰
Tsai, Meng-Chen
論文名稱: 擴增實境與模擬軟體的混合教學對創意自我效能、認知負荷及工程設計創意的影響—腦波研究
Effects of Augmented Reality and Simulation Software Hybrid Teaching on Creative Self-Efficacy, Cognitive Load, and Engineering Design Creativity—A Brain Wave Study
指導教授: 張玉山
Chang, Yu-Shan
口試委員: 吳清山
Wu, Ching-Shan
張明文
Chang, Ming-Wen
蕭顯勝
Hsiao, Hsien-Sheng
張玉山
Chang, Yu-Shan
口試日期: 2024/01/17
學位類別: 碩士
Master
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 220
中文關鍵詞: AR模擬軟體創意自我效能認知負荷工程設計創意腦波
英文關鍵詞: AR, simulation software, creative self-efficacy, cognitive load, engineering design creativity, brain waves
研究方法: 準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400166
論文種類: 學術論文
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在了解擴增實境與模擬軟體的混合教學,對高中生之創意自我效能、認知負荷及工程設計創意的影響,並透過腦波資料的蒐集分析其工程設計的認知歷程。本研究採不等組準實驗設計,於新北市某公立高中六個班級,共245人,各3個班級作為實驗組及對照組,基於工程設計流程之水陸兩用車教學,實驗組採擴增實境與模擬軟體的混合教學,對照組則採多媒體講述教學。
    本研究透過蒐集受試者之認知負荷、創意自我效能、工程設計歷程前後測資料、及工程設計創意結果評量,進行平均數、標準差、及共變數分析。除此之外於工程設計歷程中蒐集其腦波數據,針對各歷程進行單一樣本t檢定及獨立樣本t檢定,對腦波變化進行分析。
    研究結果如下:(1)擴增實境與模擬軟體的混合教學對創意自我效能具有正向影響,實驗組優於對照組;(2)擴增實境與模擬軟體的混合教學對降低認知負荷具有正向影響,實驗組認知負荷低於對照組;(3)擴增實境與模擬軟體的混合教學對工程設計創意表現具有正向影響,實驗組優於對照組;(4)擴增實境與模擬軟體的混合教學可強化工程設計歷程聚斂性思考能力。
    最後,本研究根據結果,提出增加擴增實境與模擬軟體於工程設計歷程時的使用時段、於課堂中加強學生擴散性思考的引導教學實務的建議,以及未來在進行腦波資料蒐集及研究方向的建議。

    The primary objective of this study is to ascertain the influence of a hybrid approach incorporating augmented reality and simulation software on the creative self-efficacy, cognitive load, and engineering design creativity of high school students. Additionally, the study endeavors to dissect the cognitive processes involved in engineering design through the meticulous collection and analysis of brainwave data. Employing a non-equivalent group quasi-experimental design, the research was conducted across six classes, comprising a total of 245 students in a public high school located in New Taipei City. Three classes were designated as the experimental group, while the remaining three served as the control group. The instructional focus centered on the teaching of an amphibious vehicle design process, with the experimental group receiving instruction via the integration of augmented reality and simulation software, and the control group undergoing traditional multimedia lecture-based instruction.
    Data collection encompassed both pre- and post-tests evaluating participants' cognitive load, creative self-efficacy, as well as assessments of the engineering design process and creativity. Statistical analyses, including means, standard deviations, and covariance analysis, were applied. Moreover, brainwave data was meticulously collected throughout the engineering design process, and statistical tools such as single-sample t-tests and independent-sample t-tests were utilized to scrutinize alterations in brainwave patterns.
    The discerned outcomes of the study are delineated as follows: (1) The blended teaching approach, incorporating augmented reality and simulation software, positively impacts creative self-efficacy, with the experimental group exhibiting superior performance compared to the control group; (2) The mixed teaching approach has a favorable effect on reducing cognitive load, as the experimental group demonstrated lower cognitive load in contrast to the control group; (3) The blended teaching approach positively influences creative performance in engineering design, as evidenced by the experimental group's superior outcomes relative to the control group; (4) The integration of augmented reality and simulation software enhances convergent thinking skills within the engineering design process.
    In conclusion, based on the examinations, recommendations are proffered, including the suggestion to augment the utilization of augmented reality and simulation software during specific stages of the engineering design process. Additionally, there is a proposal to fortify guidance for students' divergent thinking within the classroom setting. Moreover, considerations for future research directions and data collection related to brainwave analysis are presented.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 5 第三節 名詞釋義 6 第四節 研究範圍與限制 9 第二章 文獻探討 11 第一節 擴增實境相關理論 11 第二節 模擬軟體 24 第三節 工程設計 28 第四節 創意自我效能 34 第五節 認知負荷 38 第六節 創意設計與腦波 44 第三章 研究設計與實施 59 第一節 研究架構 59 第二節 研究對象 60 第三節 研究設計 61 第四節 研究工具 63 第五節 研究流程 91 第六節 資料收集與分析 93 第七節 研究倫理 95 第四章 研究結果與討論 97 第一節 教學策略對創意自我效能的影響 97 第二節 教學策略對認知負荷的影響 105 第三節 教學策略對工程設計創意表現的影響 112 第四節 工程設計歷程腦波的變化 126 第五節 教學策略對腦波變化的影響 142 第六節 綜合討論 146 第五章 結論與建議 161 第一節 結論 161 第二節 建議 165 參考文獻 169 一、中文部份 169 二、外文部份 172 附 錄 201

    一、中文部份
    王燕超(2006)。從擴增實境觀點論數位學習之創新。空中教學論叢,20,40-63。
    沈翠蓮(2018)。創意問題解決在通識實作教學的經驗反思。通識教育學報,23,1-24。
    吳建安(1998)。神經診斷學。揚智。
    林三永(2011)。MINDO-偵測腦波,讓你更專心。科學人雜誌。https://sa.ylib.com/MagArticle.aspx?id=1821
    林碧玲(2015)。不同順序的電腦模擬實驗和動手做實驗對國小學生科學學習成就及概念理解的影響-以「燃燒」為例(未出版之碩士論文)。國立新竹教育大學。
    邱美燕(2015)。結合動手做實驗與虛擬實驗對國小學生在科學概念理解和對自然課的態度的影響(未出版之碩士論文)。國立新竹教育大學數理教育研究所科學教育教學系。
    邱皓政(2002)。學校組織創新氣氛的內涵與教師創造力的實踐:另一件國王的新衣?應用心理研究,15,191-224。
    邱皓政、周怡君、林碧芳(2010)。 [工作設計量表] 信效度衡鑑與工作結構潛在類別分析。測驗學刊,57(1),139-179。
    洪榮昭、陳美蓮、葉建宏、陳柏熹(2020)。青少年創意自我效能,競賽投入與參加競賽的價值之關係-以IEYI 世界青少年創客發明展選拔賽為例。教育心理學報,51(3),457-481。
    洪素蘋、林珊如(2004)。Whatever you say, I can do it ─「學生創意自我 效能量表」之編製。論文發表於政治大學創新與創造力研究中心主辦 之「2004 年第二屆創新與創造力研討會」,台北。
    洪肇儀(2016)。以嵌入虛擬實驗之線上測驗探討國三學生浮力的迷思概念(未出版之碩士論文)。國立高雄師範大學科學教育學系。
    范光仁(2003)。虛擬化實驗室對國中生理化知識之有效學習〔未出版之碩士論文〕。國立交通大學網路學習學程。
    姚經政、林呈彥(2016)。STEM 教育應用於機器人教學—以 6E 教學模式結合差異化教學。科技與人力教育季刊, 3(1), 53-75。
    國家教育研究院(2018)。十二年國民基本教育課程綱要:科技領域。台北:教育部。https://doi.org/10.6587/JTHRE
    陳英佳(2001)。互動式電子白板虛擬實驗教學對國中生學習原子與分子之自我效能及概念理解的影響(未出版之碩士論文)。國立高雄師範大學科學教育學系。
    陳密桃(2003)。認知負荷理論及其對教學的啟示。教育學刊,21,29-51。
    張玉山(2003)。虛擬團隊之創造力研究-以師院勞作課程為例〔未出版之博士論文〕。國立台灣師範大學工業教育研究所。
    張玉山、陳思貽(2013年5月17日)。雲端學習對學生創意表現之影響。2013第二屆工程與科技教育學術研討會,台北市。
    張芳瑜(2016)。於高中實施工程設計專題製作活動課程設計之探討。科技與人力教育季刊,3(1),5-11。https://doi.org/10.6587/JTHRE
    張絲凡(2016)。擴增實境遊戲影響使用者行為與自我效能之研究〔未出版之碩士論文〕。國立交通大學傳播研究所。
    張錡(2022)。應用試誤學習於高中工程設計專題之預測分析。科技與人力教育季刊,8(3),68-81。https://doi.org/10.6587/JTHRE
    教育部(2003)。5G智慧共享教學 沉浸式學習體驗 「教育部112-113年5G新科技學習示範學校計畫」全面啟動。https://www.edu.tw/News_Content.aspx?n=9E7AC85F1954DDA8&s=A65C46E37F430ED3
    詹志禹(2002)。科學發現與知識成長:我們能從科學哲學當中學到什麽?應用心理研究,15,105-127。
    楊維明(2017)。虛擬實驗融入數據建模教學對國中生力與運動學習成效之影響〔未出版之碩士論文〕。國立高雄師範大學科學教育暨環境教育研究所。
    葉懿珍(2017)。融入虛擬實驗的討論式教學對國中生數據建模能力之影響-以熱量與比熱單元為例〔未出版之碩士論文〕。國立高雄師範大學科學教育暨環境教育研究所。
    廖家現、范斯淳(2020)。高中生活科技工程設計實作教學活動-以班級 [養機場] 為例。工業科技教育學刊,13,44-64。https://doi.org/44-64. 10.6306/JITE
    廖冠智、陳依琦(2014)。北埔文化史蹟擴增實境導覽設計與應用探究。人文社會學報,10(3),253-279。https://doi.org/10.29506/JLASS
    蔡永彬(2012)。何謂腦波?科學人雜誌。https://paper.udn.com/udnpaper/PIE0010/201352/web/#01
    薛凱文(1997)。擴增實境應用探討-使用無標記技術〔未出版之碩士論文〕。嶺東科技大學數位媒體研究所。
    二、外文部份
    Accreditation Board for Engineering and Technology. (2007). ABET 2009 requirements. http://www.abet.org/Linked DocumentsUPDATE/Criteria and PP/E001 09-10 EAC Criteria 12-01-08.pdf
    Agnoli, S., Zanon, M., Mastria, S., Avenanti, A., & Corazza, G. E. (2020). Predicting response originality through brain activity: An analysis of changes in EEG alpha power during the generation of alternative ideas. NeuroImage, 207. https://doi.org/10.1016/j.neuroimage.2019.116385
    Alotaibi, K. N. (2016). Psychometric properties of creative self-efficacy inventory among distinguished students in Saudi Arabian universities. Psychological Reports, 118(3), 902-917. https://doi.org/10.1177/003329411664602
    Amabile, T. M. (1983). The social psychology of creativity: A componential conceptualization. Journal of Personality and Social Psychology, 45(2), 357-376. https://doi.org/10.1037/0022-3514.45.2.357
    Amabile, T. M., Conti, R., Coon, H., Lazenby, J., & Herron, M. (1996). Assessing the work environment for creativity. Academy of Management Journal, 39(5), 1154-1184. https://doi.org/10.5465/256995
    Amin, S. U., Altaheri, H., Muhammad, G., Abdul, W., & Alsulaiman, M. (2021). Attention-inception and long-short-term memory-based electroencephalography classification for motor imagery tasks in rehabilitation. IEEE Transactions on Industrial Informatics, 18(8), 5412-5421. https://doi.org/10.1109/TII.2021.3132340.
    Artino, A. R. (2008). Motivational beliefs and perceptions of instructional quality: Predicting satisfaction with online training. Journal of Computer Assisted Learning, 24(3), 260-270. https://doi.org/10.1111/j.1365-2729.2007.00258.x
    Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., & Saleem, J. (2007). Engineering design processes: A comparison of students and expert practitioners. Journal of Engineering Education, 96(4), 359-379. https://doi.org/10.1002/j.2168-9830.2007.tb00945.x
    Aydoğan, B., & Çakıroğlu, J. (2022). The effects of engineering design-based instruction On 7th grade students’ Nature of engineering views. Journal of Science Education and Technology, 31(1), 68-80. https://doi.org/10.1007/s10956-021-09931-2
    Bacca, J., Baldiris, S., Fabregat, R., & Kinshuk. (2018). Insights into the factors influencing student motivation in Augmented Reality learning experiences in vocational education and training. Frontiers in Psychology, 9(1486), 1-13. https://doi.org/10.3389/fpsyg.2018.014
    Baker, S., Lesaux, N., Jayanthi, M., Dimino, J., Proctor, C. P., Morris, J., NewmanGonchar, R. (2014). Teaching academic content and literacy to English learners in elementary and middle school (NCEE 2014- 4012). National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. http://ies.ed.gov/ncee/wwc/pdf/practice_ guides/english_learners_pg_040114.pdf
    Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191. https://doi.org/10.1037/0033-295X.84.2.191
    Bannert, M. (2002). Managing cognitive load—Recent trends in cognitive load theory. Learning and Instruction, 12(1), 139-146.
    Beneroso, D., & Robinson, J. (2022). Online project-based learning in engineering design: Supporting the acquisition of design skills. Education for Chemical Engineers, 38, 38-47. https://doi.org/10.1016/j.ece.2021.09.002
    Besemer, S. P. (1998). Creative product analysis matrix: Testing the model structure and a comparison among products--three novel chairs. Creativity Research Journal, 11(4), 333-346. https://doi.org/10.1207/s15326934crj1104_7
    Betz, J. A. (1996). Computer games: Increase learning in an interactive multidisciplinary environment. Journal of Technology Systems, 24 (2), 195-205.
    Bicer, A., Lee, Y., Perihan, C., Capraro, M. M., & Capraro, R. M. (2020). Considering mathematical creative self-efficacy with problem posing as a measure of mathematical creativity. Educational Studies in Mathematics, 105, 457-485. https://doi.org/10.1007/s10649-020-09995-8
    Brattström, A., Löfsten, H., & Richtnér, A. (2012). Creativity, trust and systematic processes in product development. Research Policy, 41(4), 743-755. https://doi.org/10.1016/j.respol.2011.12.003
    Braud, T., Zhang, W., Finley, B., & Hui, P. (2023). Networking and cyber foraging for mobile Augmented Reality. In Springer Handbook of Augmented Reality (pp. 273-302). Springer. https://doi.org/10.1007/978-3-030-67822-7_11
    Buchner, J., Buntins, K., & Kerres, M. (2022). The impact of Augmented Reality on cognitive load and performance: A systematic review. Journal of Computer Assisted Learning, 38(1), 285-303. https://doi.org/10.1111/jcal.12617
    Cabañero, L., Hervás, R., González, I., Fontecha, J., Mondéjar, T., & Bravo, J. (2020). Characterisation of mobile-device tasks by their associated cognitive load through EEG data processing. Future Generation Computer Systems, 113, 380-390. https://doi.org/10.1016/j.future.2020.07.013
    Cai, S., Liu, C., Wang, T., Liu, E., & Liang, J. (2020) Effects of learning physics using Augmented Reality on students’ self-efficacy and conceptions of learning. British Journal of Educational Technology, 52, 235-251. https://doi.org/10.1111/bjet.13020
    Cao, J., Zhao, W., & Guo, X. (2021). Utilizing EEG to explore design fixation during creative idea generation. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2021/6619598
    Carmeli, A., & Schaubroeck, J. (2007). The influence of leaders' and other referents' normative expectations on individual involvement in creative work. The Leadership Quarterly, 18(1), 35-48. https://doi.org/10.1016/j.leaqua.2006.11.001
    Castro-Meneses, L. J., Kruger, J. L., & Doherty, S. (2020). Validating theta power as an objective measure of cognitive load in educational video. Educational Technology Research and Development, 68, 181-202. https://doi.org/10.1007/s11423-019-09681-4
    Chen, C. L., Liao, C. Y., Chen, R. C., Tang, Y. W., & Shih, T. F. (2017, April). Bus drivers fatigue measurement based on monopolar EEG. In Intelligent Information and Database Systems: 9th Asian Conference (pp. 308-317). Springer International Publishing. https://doi.org/10.1007/978-3-319-54430-4_30
    Chen, C. M., & Wu, C. H. (2015). Effects of different video lecture types on sustained attention, emotion, cognitive load, and learning performance. Computers & Education, 80, 108-121. https://doi.org/10.1016/j.compedu.2014.08.015
    Chen, G., Gully, S. M., & Eden, D. (2001). Validation of a new general self-efficacy scale. Organizational Research Methods, 4(1), 62-83. https://doi.org/10.1177/109442810141004
    Cheng, J. C., Chen, K., & Chen, W. (2017). Comparison of marker-based AR and markerless AR: A case study on indoor decoration system. In Lean and Computing in Construction Congress : Proceedings of the Joint Conference on Computing in Construction, 483-490. https://doi.org/10.24928/JC3-2017/0231
    Choi, B. S., & Gennaro, E. (1987). The effectiveness of using computer simulated experiments on junior high students' understanding of the volume displacement concept. Journal of Research in Science Teaching, 24(6), 539-552.
    Chrysikou, E. G., Jacial, C., Yaden, D. B., van Dam, W., Kaufman, S. B., Conklin, C. J., Wintering, N. A., Abraham, R. E., Jung, R. E., & Newberg, A. B. (2020). Differences in brain activity patterns during creative idea generation between eminent and non-eminent thinkers. NeuroImage, 220, 117011. https://doi.org/10.1016/j.neuroimage.2020.117011
    Condie, R., & Munro, R. K. (2007). The impact of ICT in schools-a landscape review. Coventry: Becta. http://publications.becta.org.uk/display.cfm?resID=28221&page=1835
    Conradty, C., Sotiriou, S. A., & Bogner, F. X. (2020). How creativity in STEAM modules intervenes with self-efficacy and motivation. Education Sciences, 10(3), 70. https://doi.org/10.3390/educsci10030070
    Cox, M., Abbott, C., Webb, M., Blakely, B., Beauchamp, T., & Rhodes, V. (2003). ICT and attainment: A review of the research literature. Coventry: Becta (ICT in Schools Research and Evaluation Series).
    Daşdemir, Y. (2022). Cognitive investigation on the effect of Augmented Reality-based reading on emotion classification performance: A new dataset. Biomedical Signal Processing and Control, 78, 103942. https://doi.org/10.1016/j.bspc.2022.103942
    De Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305-308. https://doi.org/10.1126/science.1230579
    Design Council (2006) Double diamond design process. https://www.designcouncil.org.uk/our-work/the-double-diamond/
    Dutson, A. J., Todd, R. H., Magleby, S. P., & Sorensen, C. D. (1997). A review of literature on teaching engineering design through project‐oriented capstone courses. Journal of Engineering Education, 86(1), 17-28. https://doi.org/10.1002/j.2168-9830.1997.tb00260.x
    Dym, C. L. (2013). Engineering design: A project-based introduction (2nd ed.). New York: John Wiley & Sons.
    Ekmekci, A., & Gulacar, O. (2015). A case study for comparing the effectiveness of a computer simulation and a hands-on activity on learning electric circuits. Eurasia Journal of Mathematics, Science and Technology Education, 11(4), 765-775. https://doi.org/10.12973/eurasia.2015.1438a
    Farmer, S. M., Tierney, P., & Kung-McIntyre, K. (2003). Employee creativity in Taiwan: An application of role identity theory. Academy of Management Journal, 46(5), 618-630. https://doi.org/10.5465/30040653
    Feiner, S. K. (2002). Augmented Reality: A new way of seeing. Scientific American, 286(4), 48-55.
    Feng, C., & Kamat, V. R. (2012, November). Augmented Reality markers as spatial indices for indoor mobile AECFM applications. In Proceedings of 12th Tnternational Conference on Construction Applications of Virtual Reality (CONVR 2012) (pp. 235-24). https://doi.org/10.13140/2.1.4484.4166
    Fombona, J., Pascual-Sevillana, Á., & González-Videgaray, M. (2017). M-learning and Augmented Reality: A review of the scientific literature on the WoS repository. Comunicar. Media Education Research Journal, 25(2). https://doi.org/10.3916/C52-2017-06
    Fong, W. T., Ong, S. K., & Nee, A. Y. (2008). A differential GPS carrier phase technique for precision outdoor AR tracking. In 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (pp. 25-28). IEEE. https://doi.org/10.1109/ISMAR.2008.4637319
    Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error. Algebra and Statistics. https://doi.org/10.1177/002224378101800313
    Forsberg, A., Guitard, D., Greene, N. R., Naveh-Benjamin, M., & Cowan, N. (2022). The proportion of working memory items recoverable from long-term memory remains fixed despite adult aging. Psychology and Aging https://doi.org/10.1037/pag0000703.
    Furmanski, C., Azuma, R., & Daily, M. (2002). Augmented-reality visualizations guided by cognition: Perceptual heuristics for combining visible and obscured information. In Proceedings of the International Symposium on Mixed and Augmented Reality (pp. 215-320). IEEE. https://doi.org/10.1109/ISMAR.2002.1115091
    Geng, X., & Yamada, M. (2020). An Augmented Reality learning system for Japanese compound verbs: Study of learning performance and cognitive load. Smart Learning Environments, 7, 1-19. https://doi.org/10.1186/s40561-020-00137-4
    Gill, S. E., Marcum-Dietrich, N., & Becker-Klein, R. (2014). Model my watershed: Connecting students' conceptual understanding of watersheds to real-world decision making. Journal of Geoscience Education, 62(1), 61-73. https://doi.org/10.5408/12-395.1
    Gokhale, A. A. (1996). Effectiveness of computer simulation for enhancing higher order thinking. Journal of Industrial Teacher Education, 33 (4), 36-46.
    Gomes, P., Seco, N., Pereira, F. C., Paiva, P., Carreiro, P., Ferreira, J. L., & Bento, C. (2006). The importance of retrieval in creative design analogies. Knowledge-Based Systems, 19(7), 480-488. https://doi.org/10.1016/j.knosys.2006.04.006
    González-Garrido, A. A., Gómez-Velázquez, F. R., Salido-Ruiz, R. A., Espinoza-Valdez, A., Vélez-Pérez, H., Romo-Vazquez, R., Gallardo-Moreno, G. B., Ruiz-Stovel, V. D., Martínez-Ramos, A., & Berumen, G. (2018). The analysis of EEG coherence reflects middle childhood differences in mathematical achievement. Brain and Cognition, 124, 57-63. https://doi.org/10.1016/j.bandc.2018.04.006
    Greene, M. T., & Papalambros, P. Y. (2016). A cognitive framework for engineering systems thinking. In 2016 Conference on Systems Engineering Research.
    Gulbahar, Y., & Guven, I. (2008). A survey on ICT usage and the perceptions of social studies teachers in Turkey. Journal of Educational Technology & Society, 11(3), 37-51.
    Haase, J., Hoff, E. V., Hanel, P. H., & Innes-Ker, Å. (2018). A meta-analysis of the relation between creative self-efficacy and different creativity measurements. Creativity Research Journal, 30(1), 1-16. https://doi.org/10.1080/10400419.2018.1411436
    Harkow, R. M. (1996). Increasing creative thinking skills in second and third grade gifted students using imagery, computers, and creative problem solving. Unpublished master’s thesis, NOVA Southeastern University.
    Hartley, K. A., Plucker, J. A., & Long, H. (2016). Creative self-efficacy and teacher ratings of student creativity in Chinese elementary classrooms. Thinking Skills and Creativity, 22, 142-151. https://doi.org/10.1016/j.tsc.2016.10.001
    Hockicko, P. (2009). Useful computer software for physical analysis of processes. In Proceedings of the 2009 Information and Communication Technology in Education. Annual Conference, 15th–17th September.
    Howard, T. J., Culley, S. J., & Dekoninck, E. (2008). Describing the creative design process by the integration of engineering design and cognitive psychology literature. Design Studies, 29(2), 160-180. https://doi.org/10.1016/j.destud.2008.01.001
    Howe, R. P. (1992). Uncovering the creative dimensions of computer‐graphic design products. Creativity Research Journal, 5(3), 233-243. https://doi.org/10.1080/10400419209534437
    Hsu, L.A., Hou, S.T., & Fan, H.L. (2011). Creative self‐efficacy and innovative behavior in a service setting: Optimism as a moderator. The Journal of Creative Behavior, 45(4), 258-272. https://doi.org/10.1002/j.2162-6057.2011.tb01430.x
    Huang, F., Zhou, Y., Yu, Y., Wang, Z., & Du, S. (2011). Piano AR: A markerless Augmented Reality based piano teaching system. In 2011 Third international conference on intelligent human-machine systems and cybernetics (Vol. 2, pp. 47-52). IEEE. https://doi.org/10.1109/IHMSC.2011.82
    Huang, H. Y., & Hung, S. P. (2009). A study of examining construct validity on the scale of creative self-efficacy for students through both linear and nonlinear approaches. Journal of Pingtung University of Education, 33, 489-513.
    Huang, N. T., Chang, Y. S., & Chou, C. H. (2020). Effects of creative thinking, psychomotor skills, and creative self-efficacy on engineering design creativity. Thinking Skills and Creativity, 37, 100695. https://doi.org/10.1016/j.tsc.2020.100695
    Hung, S. P. (2018). Validating the creative self-efficacy student scale with a Taiwanese sample: An item response theory-based investigation. Thinking Skills and Creativity, 27, 190-203. https://doi.org/10.1016/j.tsc.2018.02.006
    Hursen, C., & Asiksoy, G. (2015). The effect of simulation methods in teaching physics on students' academic success. World Journal of Educational Technology, 7 (1), 87-98. https://doi.org/10.18844/wjet.v7i1.26.
    Hynes, M., Portsmore, M., Dare, E., Milto, E., Rogers, C., & Hammer, D. (2011). Infusing engineering design into high school STEM courses. http://ncete.org/flash/pdfs/Infusing%20Engineering%2
    Jackson, P. W., & Messick, S. (1965). The person, the product, and the response: Conceptual problems in the assessment of creativity. Journal of Personality. https://doi.org/10.1111/j.1467-6494.1965.tb01389.x
    Jayawardena, N. S., Thaichon, P., Quach, S., Razzaq, A., & Behl, A. (2023). The persuasion effects of Virtual Reality (VR) and Augmented Reality (AR) video advertisements: A conceptual review. Journal of Business Research, 160, 113739. https://doi.org/10.1016/j.jbusres.2023.113739
    Kaimal, G., Carroll-Haskins, K., Berberian, M., Dougherty, A., Carlton, N., & Ramakrishnan, A. (2020). Virtual reality in art therapy: A pilot qualitative study of the novel medium and implications for practice. Art Therapy, 37(1), 16-24. https://doi.org/10.1080/07421656.2019.1659662
    Kapilan, N., Vidhya, P., & Gao, X. Z. (2021). Virtual laboratory: A boon to the mechanical engineering education during covid-19 pandemic. Higher Education for the Future, 8(1), 31-46. https://doi.org/10.1177/2347631120970757
    Karamustafaoğlu, O. (2012). How computer-assisted teaching in physics can enhance student learning. Educational Research and Reviews, 7(13), 297.
    Karwowski, M. (2011). It doesn't hurt to ask… But sometimes it hurts to believe: Polish students' creative self-efficacy and its predictors. Psychology of Aesthetics, Creativity, and the Arts, 5(2), 154. https://doi.org/10.1037/a0021427
    Kelly, G. J., & Cunningham, C. M. (2019). Epistemic tools in engineering design for K‐12 education. Science Education, 103(4), 1080-1111. https://doi.org/10.1002/sce.21513
    Klahr, D., Triona, L. M., & Williams, C. (2007). Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children. Journal of Research in Science Teaching, 44(1), 183-203. https://doi.org/10.1002/tea.20152
    Klip, A., Guma, A., Ramlal, T., Bilan, P. J., Lam, L., & Leiter, L. A. (1992). Stimulation of hexose transport by metformin in L6 muscle cells in culture. Endocrinology, 130(5), 2535-2544.
    Kokotsaki, D. (2011). Student teachers’ conceptions of creativity in the secondary music classroom. Thinking Skills and Creativity, 6(2), 100-113. https://doi.org/10.1016/j.tsc.2011.04.001
    Kretschmer, U., Coors, V., Spierling, U., Grasbon, D., Schneider, K., Rojas, I., & Malaka, R. (2001). Meeting the spirit of history. In Proceedings of the 2001 Conference on Virtual Reality, Archeology, and Cultural Heritage (pp. 141-152). Glyfada: ACM. https://dl.acm.org/citation.cfm?id
    Kumaran, R., Kim, Y. J., Milner, A. E., Bullock, T., Giesbrecht, B., & Höllerer, T. (2023, April). The impact of navigation aids on search performance and object recall in wide-area Augmented Reality. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (pp. 1-17). https://doi.org/10.1145/3544548.3581413
    Lee, L. H., Braud, T., Zhou, P., Wang, L., Xu, D., Lin, Z., Kumar, A., Bermejo, C., & Hui, P. (2021). All one needs to know about metaverse: A complete survey on technological singularity, virtual ecosystem, and research agenda. arXiv preprint arXiv:2110.05352. https://doi.org/10.48550/arXiv.2110.05352
    Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G., & Moran, D. W. (2004). A brain–computer interface using electrocorticographic signals in humans. Journal of Neural Engineering, 1(2), 63. https://doi.org/10.1088/1741-2560/1/2/001
    Li, J., Jin, Y., Lu, S., Wu, W., & Wang, P. (2020). Building environment information and human perceptual feedback collected through a combined virtual reality (VR) and electroencephalogram (EEG) method. Energy and Buildings, 224, 110259. https://doi.org/10.1016/j.enbuild.2020.110259
    Lin, Y. J., & Wang, H. C. (2021). Using virtual reality to facilitate learners’ creative self-efficacy and intrinsic motivation in an EFL classroom. Education and Information Technologies, 26(4), 4487-4505. https://doi.org/10.1007/s10639-021-10472-9
    Liu, D., Chen, X. P., & Yao, X. (2011). From autonomy to creativity: A multilevel investigation of the mediating role of harmonious passion. Journal of Applied Psychology, 96(2), 294. https://doi.org/10.1037/a0021294
    Liu, Y., Sathishkumar, V. E., & Manickam, A. (2022). Augmented Reality technology based on school physical education training. Computers and Electrical Engineering, 99, 107807. https://doi.org/10.1016/j.compeleceng.2022.107807
    Lobert, B. M., & Dologite, D. G. (1994, January). Measuring creativity of information system ideas: An exploratory investigation. In 1994 Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences. https://doi.org/10.1109/HICSS.1994.323475
    Lopez-Mesa, B., Mulet, E., Vidal, R., & Thompson, G. (2011). Effects of additional stimuli on idea-finding in design teams. Journal of Engineering Design, 22(1), 31-54. https://doi.org/10.1080/09544820902911366
    Mabry, J., Lee, E., Roberts, T., & Garrett, R. (2020). Virtual simulation to increase self-efficacy through deliberate practice. Nurse Educator, 45(4), 202-205. https://doi.org/10.1097/NNE.0000000000000758
    Mandal, A., & Saxena, N. (2022, May). SoK: Your mind tells a lot about you: On the privacy leakage via brainwave devices. In Proceedings of the 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks .
    Marcus, N., Cooper, M., & Sweller, J. (1996). Understanding instructions. Journal of Educational Psychology, 88(1), 49. https://doi.org/10.1037/0022-0663.88.1.49
    Mazza, A., Dal Monte, O., Schintu, S., Colombo, S., Michielli, N., Sarasso, P., Törlind, P., Cantamessa, M., Montagna, F., & Ricci, R. (2023). Beyond alpha-band: The neural correlate of creative thinking. Neuropsychologia, 179, 108446. https://doi.org/10.1016/j.neuropsychologia.2022.108446
    Meyer, A., Rose, D. H., & Gordon, D. T. (2014). Universal design for learning: Theory and practice. CAST Professional Publishing.
    Michael, C. C., McGraw, G., & Schatz, M. A. (2001). Generating software test data by evolution. IEEE Transactions on Software Engineering, 27(12), 1085-1110. https://doi.org/10.1109/32.988709
    Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329.
    Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented Reality: A class of displays on the reality-virtuality continuum. In Telemanipulator and Telepresence Technologies (Vol. 2351, pp. 282-292). Spie. https://doi.org/10.1117/12.197321
    Moonesar, I., & Mourtada, R. (2015). Persistence in the Abu Dhabi STEM pipeline: Preparing emirati youth for careers in the UAE innovation economy. Report published by the Emirates Foundation and Mohamed Bin Rashid school of government.
    Mumford, M. D., & Gustafson, S. B. (1988). Creativity syndrome: Integration, application, and innovation. Psychological Bulletin, 103(1), 27. https://doi.org/10.1037/0033-2909.103.1.27
    Mutlu-Bayraktar, D., Cosgun, V., & Altan, T. (2019). Cognitive load in multimedia learning environments: A systematic review. Computers & Education, 141, 103618. https://doi.org/10.1016/j.compedu.2019.103618
    Mystakidis, S., Christopoulos, A., & Pellas, N. (2022). A systematic mapping review of Augmented Reality applications to support STEM learning in higher education. Education and Information Technologies, 27(2), 1883-1927. https://doi.org/10.1007/s10639-021-10682-1
    National Science Foundation(2022). NSF convergence accelerator 2022 joint NSF/DOD phases 1 and 2 for track G: Securely operating through 5G infrastructure. https://www.nsf.gov/pubs/2022/nsf22538/nsf22538.htm
    Nelson, B. A., Wilson, J., Rosen, D., & Yen, J. (2009). Refined metrics for measuring ideation effectiveness. Design Studies, 30(6), 737-743. https://doi.org/10.1016/j.destud.2009.07.002
    Noachtar, S., Binnie, C., Ebersole, J., Mauguiere, F., Sakamoto, A., & Westmoreland, B. (1999). A glossary of terms most commonly used by clinical electroencephalographers and proposal for the report form for the EEG findings. The International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology. Supplement, 52, 21-41.
    O'Connor, Y., & Mahony, C. (2023). Exploring the impact of Augmented Reality on student academic self-efficacy in higher education. Computers in Human Behavior, 149, 107963. https://doi.org/10.1016/j.chb.2023.107963
    Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: An effort to improve students' conceptual understanding through science laboratory experimentation. Science Education, 96(1), 21-47. https://doi.org/10.1002/sce.20463
    Oman, S. K., Tumer, I. Y., Wood, K., & Seepersad, C. (2013). A comparison of creativity and innovation metrics and sample validation through in-class design projects. Research in Engineering Design, 24, 65-92. https://doi.org/10.1007/s00163-012-0138-9
    Özeren, S., & Top, E. (2023). The effects of Augmented Reality applications on the academic achievement and motivation of secondary school students. Malaysian Online Journal of Educational Technology, 11(1), 25-40. https://doi.org/10.52380/mojet.2023.11.1.425
    Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84(4), 429. https://doi.org/10.1037/0022-0663.84.4.429
    Papagiannakis, G., Singh, G., & Magnenat‐Thalmann, N. (2008). A survey of mobile and wireless technologies for Augmented Reality systems. Computer Animation and Virtual Worlds, 19(1), 3-22. https://doi.org/10.1002/cav.221
    Pfurtscheller, G. (2001). Functional brain imaging based on ERD/ERS. Vision Research, 41(10-11), 1257-1260. https://doi.org/10.1016/S0042-6989(00)00235-2
    Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson Jr, R., ... & Taylor, M. J. (2000). Guidelines for using human event‐related potentials to study cognition: Recording standards and publication criteria. https://doi.org/10.1111/1469-8986.3720127
    Piffer, D. (2012). Can creativity be measured? An attempt to clarify the notion of creativity and general directions for future research. Thinking Skills and Creativity, 7(3), 258-264. https://doi.org/10.1016/j.tsc.2012.04.009
    Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V. M., & Jovanović, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309-327. https://doi.org/10.1016/j.compedu.2016.02.002
    Prent, N., & Smit, D. J. (2020). The dynamics of resting-state alpha oscillations predict individual differences in creativity. Neuropsychologia, 142, 107456. https://doi.org/10.1016/j.neuropsychologia.2020.107456
    Ratompomalala, H., & Bruillard, É. (2011). ICT and pre service teacher training in physics and chemistry: A survey in France. In Society for Information Technology & Teacher Education International Conference (pp. 1651-1656). Association for the Advancement of Computing in Education (AACE).
    Rebolledo-Mendez, G., Dunwell, I., Martínez-Mirón, E. A., Vargas-Cerdán, M. D., De Freitas, S., Liarokapis, F., & García-Gaona, A. R. (2009). Assessing neurosky’s usability to detect attention levels in an assessment exercise. In Human-Computer Interaction. New Trends: 13th International Conference, HCI International 2009, San Diego, CA, USA, July 19-24, 2009, Proceedings, Part I 13 (pp. 149-158). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-02574-7_17
    Redifer, J. L., Bae, C. L., & Zhao, Q. (2021). Self-efficacy and performance feedback: Impacts on cognitive load during creative thinking. Learning and Instruction, 71, 101395. https://doi.org/10.1016/j.learninstruc.2020.101395
    Reitmayr, G., & Schmalstieg, D. (2001). Mobile collaborative Augmented Reality. In Proceedings IEEE and ACM International Symposium on Augmented Reality (pp. 114-123). IEEE. https://doi.org/10.1109/ISAR.2001.970521
    Rhodes, M. (1961). An analysis of creativity. The Phi Delta Kappan, 42(7), 305-310. https://www.jstor.org/stable/20342603
    Ryokai, K., & Agogino, A. (2013). Off the paved paths: Exploring nature with a mobile Augmented Reality learning tool. International Journal of Mobile Human Computer Interaction (IJMHCI), 5(2), 21-49. https://doi.org/10.4018/jmhci.2013040102
    Sahu, M., Shukla, P., Chandel, A., Jain, S., & Verma, S. (2021). Eye blinking classification through NeuroSky MindWave headset using EegID tool. In International Conference on Innovative Computing and Communications: Proceedings of ICICC 2020, Volume 1 (pp. 789-799). Springer Singapore. https://doi.org/10.1007/978-981-15-5113-0_65
    San Cornelio, G., & Gomez Cruz, E. D. G. A. R. (2014). Co-creation and participation as a means of innovation in new media: An analysis of creativity in the photographic field. International Journal of Communication, 8, 1-20.
    Sanei, S., & Chambers, J. A. (2013). EEG signal processing. John Wiley & Sons.
    Saputra, D. C. E., Azhari, A., & Ma'arif, A. (2022). K-Nearest neighbor of beta signal brainwave to accelerate detection of concentration on student learning outcomes. Engineering Letters, 30(1).
    Sarabando, C., Cravino, J. P., & Soares, A. A. (2016). Improving student understanding of the concepts of weight and mass with a computer simulation. Journal of Baltic Science Education, 15(1), 109. https://doi.org/10.33225/jbse/16.15.109
    Sarkar, P., & Chakrabarti, A. (2008). The effect of representation of triggers on design outcomes. Artif Intell Eng Des Anal Manuf, 22(2), 101-116. https://doi.org/10.1017/S0890060408000073
    Scholz, J., & Smith, A. N. (2016). Augmented Reality: Designing immersive experiences that maximize consumer engagement. Business Horizons, 59(2), 149-161. https://doi.org/10.1016/j.bushor.2015.10.003
    Shadiev, R., Hwang, W. Y., & Huang, Y. M. (2017). Review of research on mobile language learning in authentic environments. Computer Assisted Language Learning, 30(3-4), 284-303. https://doi.org/10.1080/09588221.2017.1308383
    Shah, J. J., Kulkarni, S. V., & Vargas-Hernandez, N. (2000). Evaluation of idea generation methods for conceptual design: Effectiveness metrics and design of experiments. Journal of Mechanical Design, 122, 377-384. https://doi.org/10.1115/1.1315592
    Shah, J. J., Smith, S. M., Vargas-Hernandez, N., Gerkens, D. R., & Wulan, M. (2003, September). Empirical studies of design ideation: Alignment of design experiments with lab experiments. Paper presented at the ASME Design Theory & Methods Conference, Chicago, IL. https://doi.org/10.1115/DETC2003/DTM-48679
    Sharma, A., Namsani, S., & Singh, J. K. (2015). Molecular simulation of shale gas adsorption and diffusion in inorganic nanopores. Molecular Simulation, 41(5-6), 414-422.https://doi.org/10.1080/08927022.2014.968850
    Sharunova, A., Wang, Y., Kowalski, M., & Qureshi, A. J. (2022). Applying Bloom’s taxonomy in transdisciplinary engineering design education. International Journal of Technology and Design Education, 32(2), 987-999. https://doi.org/10.1007/s10798-020-09621-x
    Shen, S., Xu, K., Sotiriadis, M., & Wang, Y. (2022). Exploring the factors influencing the adoption and usage of Augmented Reality and Virtual Reality applications in tourism education within the context of COVID-19 pandemic. Journal of Hospitality, Leisure, Sport & Tourism Education, 30, 100373. https://doi.org/10.1016/j.jhlste.2022.100373
    Sırakaya, M., & Alsancak Sırakaya, D. (2022). Augmented Reality in STEM education: A systematic review. Interactive Learning Environments, 30(8), 1556-1569. https://doi.org/10.1080/10494820.2020.1722713
    Siriwardhana, Y., Porambage, P., Liyanage, M., & Ylianttila, M. (2021). A survey on mobile Augmented Reality with 5G mobile edge computing: Architectures, applications, and technical aspects. IEEE Communications Surveys & Tutorials, 23(2), 1160-1192. https://doi.org/10.1109/COMST.2021.3061981
    Soliman, M., Pesyridis, A., Dalaymani-Zad, D., Gronfula, M., & Kourmpetis, M. (2021). The application of virtual reality in engineering education. Applied Sciences, 11(6), 2879. https://doi.org/10.3390/app11062879
    Stevens Jr, C. E., & Zabelina, D. L. (2019). Creativity comes in waves: An EEG-focused exploration of the creative brain. Current Opinion in Behavioral Sciences, 27, 154-162. https://doi.org/10.1016/j.cobeha.2019.02.003
    Stojanova, B. (2010). Development of creativity as a basic task of the modern educational system. Procedia-Social and Behavioral Sciences, 2(2), 3395-3400. https://doi.org/10.1016/j.sbspro.2010.03.522
    Sun, J. C. Y., & Yeh, K. P. C. (2017). The effects of attention monitoring with EEG biofeedback on university students' attention and self-efficacy: The case of anti-phishing instructional materials. Computers & Education, 106, 73-82. https://doi.org/10.1016/j.compedu.2016.12.003
    Sweller, J. (1988). Cognitive load during problem solving: Effects on Learning. Cognitive Science, 12(2), 257-285. https://doi.org/10.1016/0364-0213(88)90023-7
    Sweller, J., Kirschner, P. A., & Clark, R. E. (2007). Why minimally guided teaching techniques do not work: A reply to commentaries. Educational Psychologist, 42(2), 115-121. https://doi.org/10.1080/00461520701263426
    Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 251-296. https://www.jstor.org/stable/23359412
    Taher, M., & Khan, A. (2014). Comparison of simulation-based and hands-on teaching methodologies on students’ learning in an engineering technology program. QScience Proceedings, 2015(4), 58. https://doi.org/10.5339/qproc.2015.elc2014.58
    Tan, A. G., Ho, V., Ho, E., & Ow, S. (2008). High school students’ perceived creativity self-efficacy and emotions in a service learning context. The International Journalof Creativity and Problem Solving, 18, 115–126.
    Thees, M., Kapp, S., Strzys, M. P., Beil, F., Lukowicz, P., & Kuhn, J. (2020). Effects of Augmented Reality on learning and cognitive load in university physics laboratory courses. Computers in Human Behavior, 108, 106316. https://doi.org/10.1016/j.chb.2020.106316
    Tierney, P., & Farmer, S. M. (2002). Creative self-efficacy: Its potential antecedents and relationship to creative performance. Academy of Management Journal, 45(6), 1137-1148. https://doi.org/10.5465/3069429
    Tierney, P., & Farmer, S. M. (2011). Creative self-efficacy development and creative performance over time. Journal of Applied Psychology, 96(2), 277. https://doi.org/10.1037/a0020952
    Trongtirakul, T., Pusorn, K., & Peerawanichkul, U. (2022). Computer simulation-based learning: Student self-efficacy during COVID-19 outbreak. In 2022 7th International STEM Education Conference (iSTEM-Ed) (pp. 1-4). IEEE. https://doi.org/ 10.1109/iSTEM-Ed55321.2022.9920763
    Trundle, K. C., & Bell, R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54(4), 1078-1088. https://doi.org/10.1016/j.compedu.2009.10.012
    UCLA (2021). A Practical introduction to factor analysis : Exploratory factor analysis. Statistical Consulting Group https://stats.oarc.ucla.edu/spss/seminars/introduction-to-factor-analysis/a-practical-introduction-to-factor-analysis/
    Vakaliuk, T. A., Kontsedailo, V. V., Antoniuk, D. S., Korotun, O. V., Mintii, I. S., & Pikilnyak, A. V. (2020). Using game simulator Software Inc in the Software Engineering education. arXiv preprint arXiv:2012.01127.https://doi.org/10.48550/arXiv.2012.01127
    Vally, Z., Salloum, L., AlQedra, D., El Shazly, S., Albloshi, M., Alsheraifi, S., & Alkaabi, A. (2019). Examining the effects of creativity training on creative production, creative self-efficacy, and neuro-executive functioning. Thinking Skills and Creativity, 31, 70-78. https://doi.org/10.1016/j.tsc.2018.11.003
    Van Der Lugt, R. (2000). Developing a graphic tool for creative problem solving in design groups. Design Studies, 21(5), 505-522. https://doi.org/10.1016/S0142-694X(00)00021-1
    Van Krevelen, D. W. F., & Poelman, R. (2010). A survey of Augmented Reality technologies, applications and limitations. International Journal of Virtual Reality, 9(2), 1-20.
    Van Merriënboer, J. J., & Sweller, J. (2010). Cognitive load theory in health professional education: Design principles and strategies. Medical Education, 44(1), 85-93. https://doi.org/10.1111/j.1365-2923.2009.03498.x
    Vidal, R., Mulet, E., & Gómez-Senent, E. (2004). Effectiveness of the means of expression in creative problem-solving in design groups. Journal of Engineering Design, 15(3), 285-298. https://doi.org/10.1080/09544820410001697587
    Weiser, M. (1991). The computer for the 21 st century. Scientific American, 265(3), 94-105. https://doi.org/10.1038/scientificamerican0991-94
    Wieman, C. E., Adams, W. K., & Perkins, K. K. (2008). PhET: Simulations that enhance learning. Science, 322(5902), 682-683. https://doi.org/10.1126/science.1161948
    Wierwille, W. W., & Eggemeier, F. T. (1993). Recommendations for mental workload measurement in a test and evaluation environment. Human Factors, 35(2), 263-281. https://doi.org/10.1177/00187208930350020
    World Economic Forum. (2023). The future of jobs report 2023. OECD Publishing. https://www3.weforum.org/docs/WEF_Future_of_Jobs_2023.pdf?_gl=1*wkgehn*_up*MQ..&gclid=Cj0KCQjwpPKiBhDvARIsACn-gzANVtrrPw_uT4s1_sa9xs-k1dDubycxH_WzAdQ8fWVuRD1GJiD0XMkaAhrBEALw_wcB
    Yehya, F., Barbar, A., & Abou Rjeily, S. (2018). Diagnosing the barriers for integrating Educational Technology in Physics courses in Lebanese secondary schools. Research in Social Sciences and Technology, 3(2), 14-39. https://doi.org/10.46303/ressat.03.02.2
    Yehya, F., Barbar, A., & Abou-Rjelil, S. (2019). Learning with simulations: Influence of a computer simulation with hand-on activities on students' learning of the physics capacitors' concepts. Research in Social Sciences and Technology, 4(1), 1-29. https://doi.org/10.46303/ressat.04.01.1
    Yin, Y., Zheng, P., Li, C., & Wang, L. (2023). A state-of-the-art survey on Augmented Reality-assisted Digital Twin for futuristic human-centric industry transformation. Robotics and Computer-Integrated Manufacturing, 81, 102515. https://doi.org/10.1016/j.rcim.2022.102515
    Zhang, L., Lv, Q., & Xu, Y. (2017, October). Single channel brain-computer interface control system based on TGAM module. In 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) (pp. 1-5). IEEE. https://doi.org/10.1109/CISP-BMEI.2017.8302235
    Zimmerer, C., & Matthiesen, S. (2021). Study on the impact of cognitive load on performance in engineering design. Proceedings of the Design Society, 1, 2761-2770. https://doi.org/10.1017/pds.2021.537

    無法下載圖示 電子全文延後公開
    2029/01/30
    QR CODE