研究生: |
彭威智 Peng, Wei-Chih |
---|---|
論文名稱: |
三取代基苯衍生物3,5-二氟苯酚之第一電子激態暨離子態振動光譜 3,5-Difluorophenol Studied by Resonant Two-Photon Ionization and Mass- Analyzed Threshold Spectroscopy |
指導教授: |
曾文碧
Tzeng, Wen-Bih 林震煌 Lin, Cheng-Huang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 128 |
中文關鍵詞: | 3,5-二氟苯酚 、質量解析臨界游離光譜術 、共振游離雙光子游離光譜術 |
英文關鍵詞: | 3,5-Difluorophenol, Mass analyzed threshold ionization, Resonance-enhanced multiphoton ionization |
DOI URL: | https://doi.org/10.6345/NTNU202204532 |
論文種類: | 學術論文 |
相關次數: | 點閱:100 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究著重於探討3,5二氟苯酚的特性,所使用的實驗技術包括單色共振雙光子游離(1C-R2PI)光譜術、雙色共振雙光子游離(2C-R2PI)光譜術和質量臨界游離(MATI)光譜術,利用以上技術可得知分子的第一電子激發能量、絕熱游離能和電子激發態與離子態分子振動光譜。本次的實驗,我們使用單光共振雙光子游離術精準地測量出3,5二氟苯酚的第一激發態能量為 37 614 ± 2 cm-1 且第一激發態的分子振動光譜訊雜比非常良好,可以很明顯地分辨出是否為真實訊號及雜訊。擁有完整的第一激發態資訊後我們利用質量臨界游離光譜術以S100、S110b1、S19b1為中間態得到準確的絕熱游離能 72 468 ± 5 cm-1 以及離子態分子振動光譜。而在數據分析上,我們參考Varsanyi所著的Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives書中所列的實驗數據再搭配理論計算所得的結果做譜線標定。相較於實驗室之前所測量的二氟苯酚的位置同分異構物, 3,5-二氟苯酚的第一激發能與游離能都為最高。除了電子躍遷能和電子激發態與離子態分子振動的討論之外,我們也會利用量子化學計算探討3,5-二氟苯酚在基態(S0)、第一激發態(S1)與游離態(D0)時的結構變化,發現在電子躍遷時苯環的結構發生改變,此結果與實驗所見到的現象符合。
The thesis focuses on investigateing the cationic properties of 3,5-difluorophenol in the D0 state by several intermediate vibrational levels in S1 state. Our laboratory utilizes resonant two-photon ionization (R2PI), mass-analyzed threshold ionization (MATI) to get the vibrational spectra that can also determine the excitation energy (E1) and adiabatic ionization energy (IE).
In this project, I use the 1C-R2PI technique to obtain the vibronic spectrum that provides the accurate first electronic excitation energy and some vibrational modes in first electronically excited (S1) state. In the vibronic (1C-R2PI) spectrum the band origin of S1←S0 transition appears at 37 614 cm-1. The signal/noise ratio is so excellent that we can easily to distinguish vibronic bands of molecular vibrations 10b, 15, 9b, 14.
The ionic spectrum recorded by MATI technique. The cationic ground (D0) state of 3,5-difluorophenol is 72 468 ± 5 cm-1. In MATI spectra, the molecule is different from other case. We use the 10b and 9b levels in the S1 to be intermediate states to record the cation spectra. However, spectral features corresponding to the 10b and 9b cation vibrations do not appear in the MATI spectra. This indicates that the transition does not follow the Franck-Condon principle. Our theoretical calculations show that the geometry of 3,5-difluorophenol is changed upon D0←S1 transition. Therefore, the calculated results support our experimental findings.
[1] T.G. Dietz, M.A. Duncan, M.G. Liveman, R.E. Smalley, J. Chem. Phys. 73 (1980) 4816.
(Resonance enhanced two‐photon ionization studies in a supersonic molecular beam: bromobenzene and iodobenzene)
[2] B.C. Giordano, L. Jin, A.J. Couch, J.P. Ferance, J.P. Landers, Anal. Chem. 76 (2004) 4705.
(Microchip laser-induced fluorescence detection of proteins at submicrogramper milliliter levels mediated by dynamic labeling under pseudonative conditions)
[3] M. Takayanagi, D. Negishi, Y. Skurai, J. Phys. Chem. A. 106 (2002) 7690.
(Torsional potential of methyl Group in m-Tolunitrile-H2O and m-Tolunitrile-N2O complexes studied by laser-induced fluorescence and hole-burning spectroscopies)
[4] P.B. McKibbin, K. Otsuka, S. Terabe, Anal. Chem. 74 (2002) 3736.
(On-Line focusing of flavin derivatives using dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection)
[5] H. Wang, J. Xing, W. Tan, M. Lam, T. Carnelley, M. Weinfeld, X.C. Le, Anal. Chem. 74 (2002) 3714.
(Binding stoichiometry of DNA Adducts with antibody studied by capillary electrophoresis and laser-induced fluorescence)
[6] A. Nakajima, M. Hirano, R. Hasumi, K. Kaya, H. Watanabe, C.C. Carter, J.M. Williamson, T.A. Miller, J. Phys. Chem. A 101 (1997) 392.
(High-resolution laser-induced fluorescence spectra of 7-Azaindole−water complexes and 7-Azaindole dimer)
[7] S.V. Rahavendran, H.T. Karnes, Anal. Chem. 68 (1996) 3763.
(Application of rhodamine 800 for reversed phase liquid chromatographic detection using visible diode laser-induced fluorescence)
[8] D.E. Powers, J.B. Hopkins, R.E. Smally, J. Chem. Phys. 72 (1980) 5721.
(Vibrational relaxation in jet‐cooled para‐alkylaniline)
[9] J.M. Dyke, H. Ozeki, M. Takahashi, M.C.R. Cockett, K. Kimura J. Chem. Phys. 97 (1992) 8926.
(A study of phenylacetylene and styrene, and their argon complexes PA–Ar and ST–Ar with laser threshold photoelectron spectroscopy)
[10] T. Isozaki, K. Sakeda, T. Suzuki, T. Ichimura, J. Chem. Phys.132 (2010) 214308.
(Fluorescence spectroscopy of jet-cooled o-fluoroanisole: Mixing through duschinsky effect and fermi resonance)
[11] K. Watanabe, J. Chem. Phys. 22 (1954) 1564.
(Photoionization and total absorption cross section of gases. I ionization potentials of several molecules. cross sections of NH3 and NO)
[12] D.W. Turner, M.I. Al Joboury, J. Chem. Phys. 37 (1962) 3007.
(Determination of ionization potentials by photoelectron energy measurement)
[13] M.I. Al-Joboury, D.W. Turner, J. Chem. Soc. (1963) 5141.
(Molecular photoelectron spectroscopy. Part I. The hydrogen and nitrogen molecules)
[14] M.C.R. Cockett, M. Takahashi, K. Okuyama, K. Kimura, Chem.
Phys. Lett. 187 (1991) 250.
(REMPI threshold photoelectron spectra of the cis and trans rotational isomers of jet-cooled m-chlorophenol)
[15] G.C. King, A.J. Yencha and M.C.A. Lopes, J. Electron Spectrosc. Relat. Phenom. 114 (2001) 33.
(Threshold photoelectron spectroscopy using synchrotron radiation)
[16] A. Chutjian, J. M. Ajello, J. Chem. Phys. 66 (1977) 4544.
(Studies of Ar and N2 using threshold photoelectron spectroscopy by electron attachment (TPSA)
[17] D.Villarejo, R. R. Herm, M. G. Inghram, J. Chem. Phys. 46 (1967) 4995.
(Measurement of threshold electrons in the photoionization of Ar, Kr, and X)
[18] K. Muller-Dethlefs, M. Sander, E.W. Schlag, Chem. Phys. Lett. 112 (1984) 291.
(Two-colour photoionization resonance spectroscopy of NO: Complete separation of rotational levels of NO+ at the ionization threshold)
[19] L.A. Chewter, M. Sander, K. Muller-Dethlefs, E.W. Schlag, J. Chem. Phys. 86 (1987) 4737.
(High resolution zero kinetic energy photoelectron spectroscopy of benzene and determination of the ionization potential)
[20] E.W. Schlag, Cambridge University Press, Cambridge, (1998).
(ZEKE Spectroscopy)
[21] L. Zhu, P.M. Johnson, J. Chem. Phys. 94 (1991) 5769.
(Mass analyzed threshold ionization spectroscopy)
[22] J.L. Lin, L.C.L. Huang, W.B. Tzeng, J. Phys. Chem. A 105 (2001)
11455.
(Mass-analyzed threshold ionization spectroscopy of the selected rotamers of hydroquinone and p-dimethoxybenzene cations)
[23] Y. Xie, H. Su, W.B. Tzeng, Chem. Phys. Lett. 394 (2004) 182.
(Rotamers of m-aminophenol cation studied by mass analyzed threshold ionization spectroscopy and theoretical calculations)
[24] C. Li, J.L. Lin, W.B. Tzeng, J. Chem. Phys. 122 (2005) 044311.
(Mass-analyzed threshold ionization spectroscopy of the rotamers of p-n-propylphenol cation and configuration effect)
[25] C. Li, H. Su, W.B. Tzeng, Chem. Phys. Lett. 410 (2005) 99.
(Rotamers of p-methoxyphenol cation studied by mass-analyzed threshold ionization spectroscopy)
[26] J.L. Lin, C.J. Huang, C.H. Lin, W.B. Tzeng, J. Mol. Spectrosc. 244
(2007) 1.
(Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of the selected rotamers of m-methoxyaniline and o-methoxyaniline)
[27] J. Huang, J.L. Lin, W.B. Tzeng, Spectrochim. Acta A 67 (2007) 989.
(Rotamers of m-cresol cations studied by mass analyzed threshold ionization spectroscopy)
[28] Q.S. Zheng, T.I. Fang, B. Zhang, W.B. Tzeng, Chin. J. Chem. Phys.
22 (2009) 649
(Mass analyzed threshold ionization spectroscopy of Rotamers of p-ethoxyphenol)
[29] W.B. Tzeng, J.L. Lin, J. Phys. Chem. A 103 (1999) 8612.
(Ionization energy of p-fluoroaniline and vibrational levels of p-fluoroaniline cation determined by mass-analyzed threshold ionization spectroscopy)
[30] J.L. Lin, W.B. Tzeng, J. Chem. Phys. 113 (2000) 4109.
(Mass analyzed threshold ionization of the 35Cl and 37Cl isotopomers of p-chloroaniline)
[31] J.L. Lin, S.C. Yang, Y.C. Yu, W.B. Tzeng, Chem. Phys. Lett. 356
(2002) 267.
(Mass analyzed threshold ionization of p-bromoaniline: Heavy atom effects on electronic transition, ionization, and molecular vibration)
[32] S.C. Yang, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 362 (2002) 19.
(Mass analyzed threshold ionization spectroscopy of p-ethylaniline cation: Alkyl chain effects on ionization and molecular vibration)
[33] J. Lin, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 370 (2003) 44.
(Mass analyzed threshold ionization spectroscopy of p-methoxylaniline cation and influence of the OCH3 substituent)
[34] B. Zhang, C. Li, H. Su, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 390
(2004) 65-70.
(Mass analyzed threshold ionization spectroscopy of p-fluorophenol and the p-fluorosubstitution effec)
[35] J.L. Lin, C. Li, W.B. Tzeng, J. Chem. Phys. 120 (2004) 10513.
(Mass-analyzed threshold ionization spectroscopy of p-methylphenol and p-ethylphenol cations and the alkyl substitution effect)
[36] S.Y. Ketkov, G.V. Markin, S.Y. Tzeng, W.B. Tzeng. European
journal. 22 (2016) 4690-4694.
(Fine substituent effects in sandwich complexes: First threshold ionization study of monosubstituted chromium bisarene compounds)
[37] O. Dopfer, G. Reiser, K. Muller-Dethlefs, E.W. Schlag, S.D. Colson,
J. Chem. Phys. 101 (1994) 974–989.
(Zero‐kinetic‐energy photoelectron spectroscopy of the hydrogen‐bonded phenol‐water complex)
[38] A. Fujii, A. Iwasaki, N. Mikami, Chem. Lett. 11 (1997) 1099.
(Observation of intramolecular hydrogen bonds of o-Fluorophenol ions by using autoionization detected infrared spectroscopy)
[39] E. Fujimaki, A. Fujii, T. Ebata, N. Mikami, J. Chem. Phys. 110 (1999) 4238.
(Autoionization-detected infrared spectrscopy of intramolecular hydrogen bonds in aromatic cations. I. Principle and application to fluorophenol and methoxyphenol)
[40] L. Yuan, J.L. Lin, S.C. Yang, W.B. Tzeng, Chem. Phys.
323 (2006) 429.
(Mass analyzed threshold ionization spectroscopy of o-fluorophenol and o-methoxyphenol cations and influence of the nature and relative location of substituents)
[41] A. Oikawa, H. Abe, N. Mikami, M. Ito, Chem. Phys. Lett. 116
(1985) 50.
(Electronic spectra and ionization potentials of rotational isomers of several disubstituted benzenes)
[42] K. Yosida, K. Suzuki, S. Ishiuchi, M. Sakai, M. Fujii, C.E.H Dessent, K. Muller-Dethlefs, Phys. Chem. Chem. Phys 4 (2002) 534.
(The PFI-ZEKE photoelectron spectrum of m-fluorophenol and its aqueous complexes: Comparing intermolecular vibrations in rotational isomers)
[43] B. Zhang, C. Li, H. Su, J.L. Lin, W.B. Tzeng, Chemical Physics Letters 390 (2004) 65–70.
(Mass analyzed threshold ionization spectroscopy of p-fluorophenol and the p-fluoro substitution effec)
[44] V. Shivatare, W.B. Tzeng,;Bull.Korean Chem. Soc 35 (2014) 815.
(Spectroscopic Investigation of cis-2,4-difluorophenol cation by mass-analyzed threshold ionization spectroscopy)
[45] P.Y. Wu, S.Y. Tzeng, C.Y. Tsai ,W.B. Tzeng, Acta. Phys. Chim.
Sin. 32 (2016) 893.
(Rotamers of 2,5-difluorophenol studied using mass-analyzed threshold ionization spectroscopy)
[46] C.Y. Tsai, W.B. Tzeng J. Photochem. Photobiol. A 270 (2013) 53.
(Rotamers of 3,4-difluorophenol studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy)
[47] L. Zhang, C.W. Dong, M. Cheng, L. Hu, Y. Du , Q. Zhu, C. Zhang, Molecular and Biomolecular Spectroscopy. 96 (2012) 578.
(Resonance-enhanced two-photon ionization spectroscopy and theoretical
calculations of 3,5-difluoroanisole and its Ar-containing complex)
[48] R. Karaminkov, S. Chervenkov, H. J. Neusser. J. Phys. Chem. 114 (2010) 11263
(Mass-analyzed threshold ionization spectroscopy of ortho fluorinated 2-phenylethanol: identification of an additional gauche conformer)
[49] S. Kruger, F. Witte, J. Helfrich, J. Grotemeyer, Royal society of chemistry. 5 (2015) 937.
(Mass-analyzed-threshold-ionization (MATI) spectroscopy of 1,2,3-substituted
halogenated benzenes via different intermediate vibrational states in the S1 state)
[50] P.Y. Wu, W.B. Tzeng, J. Mol. Spectrosc. 316 (2015) 72.
(Selected cis- and trans-3-fluorostyrene rotamers studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy)
[51] V Shivatare, W.B. Tzeng, J. Phys. Chem. A. 118 (2014) 8277.
(Studies of structural isomers o-, m-, and p-fluorophenylacetylene by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy)
[52] V. Shivatare, W.B. Tzeng,J. Mol. Phys. 112 (2014) 2397.
(Vibronic and cation spectroscopy of selected rotamers of 4-chloro-3-fluorophenol)
[53] Y.H. Huang, W.C. Huang, W.B. Tzeng, Chem. Phys. Lett. 595 (2014) 73.
(4-Chloro-3-fluoroaniline studied by resonant two-photo ionization and mass-analyzed threshold ionization spectroscopy)
[54] H.C. Huang, K.S. Shiung, B.Y. J, W.B. Tzeng, Chem. Phys. 425 (2013) 114.
(Rotamers of m-chloroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy)
[55] W.C. Huang, P.S. Huang, C.H. Hu, W.B. Tzeng, Chem. Phys. Lett. 580 (2013) 28.
(Resonant two-photon mass-analyzed threshold ionization of 2,5-difluoroaniline)
[56] K.W. Lo, W.B. Tzeng, J.Mol. Spectrosc. 288 (2013) 1.
(3-Chloro-4-fluoroaniline studied by resonant two-photo ionization and mass-analyzed threshold ionization spectroscopy)
[57] Y. X, S.Y. Tzeng, B. Zhang, W.B. Tzeng, Spectrochim. Acta A. 102. (2013) 365 .
(Rotamers of 3,4-difluoroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy)
[58] S.Y. Tzeng, J. Y. Wu, S. Zhang, W.B. Tzeng, J.Mol. Spectrosc. 281. (2012) 40.
(Resonant two-photon mass-analyzed threshold ionization spectroscopy of 1-fluoronaphthalene and 2-fluoronaphthalene)
[59] H.C. Huang, B.Y. Jin, W.B. Tzeng, J. Photochem. and Photobio. 243 (2012) 73.
(Two-color resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of o-chloroanisole)
[60] K.S. Shiung, D. Yu, H.C. Huang, W.B. Tzeng, J. Mol. Spectrosc. 274 (2012) 43.
(Rotamers of m-fluoroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy)
[61] W.C. Huang, P.S. Huang, C.H. Hu, W.B. Tzeng, Spectrochim. Acta A. 93 (2012) 176-179.
(Vibronic and cation spectroscopy of 2,4-difluoroaniline)
[62] K.S. Shiung, D. Yu, S.Y. Tzeng, W.B. Tzeng, Chem. Phys. Lett. 524 (2012) 38.
(Cation spectroscopy of o-fluoroanisole and p-fluoroanisole by two-color resonant two-photon mass-analyzed threshold ionization)
[63] W.C. Huang, W.L. Yeh, W.B. Tzeng, J.Mol. Spectrosc. 269 (2011). 248
(Vibronic and cation spectroscopy of m-chloroaniline)
[64] W.C. Huang, W.B. Tzeng, J. Mol. Spectrosc. 266 (2011) 52.
(Cation spectroscopy of 3,4-difluoroaniline by two-color resonant two-photon mass-analyzed threshold ionization)
[65] S.D. Zhang,H. F. Zhang, W. B. Tzeng, Chin. Phys. B. 19 (2010) 123602 .
(Ultraviolet laser ionization studies of 1-fluoronaphthalene clusters and density functional theory calculations)
[66] J. Huang, K. Huang, S. Liu, Q. Luo, W. B. Tzeng, J. Photochem. and Photobio. A. 193 (2008) 245.
(Vibrational spectra and theoretical calculations of p-chlorophenol in the electronically excited S1 and ionic ground D0 states)
[67] J. Huang, J. L. Lin, W. B. Tzeng,Chem. Phys. Lett. 422 (2006) 271.
(Mass analyzed threshold ionization spectroscopy of the 35Cl and 37Cl isotopomers of p-chlorophenol and isotope effect)
[68] L. Yuan, C. Li, J. L. Lin, S. C. Yang, W. B. Tzeng, Chem. Phys. 323 (2006) 429.
(Mass analyzed threshold ionization spectroscopy of o-fluorophenol and
o-methoxyphenol cations and influence of the nature and relative location of
substituents)
[69] B. Zhang, C. Li, H. Su, J. L. Lin, W. B. Tzeng, Chem. Phys. Lett. 390 (2004) 65.
(Mass analyzed threshold ionization spectroscopy of p-fluorophenol and the p-fluoro substitution effect)
[70] V. Shivatare, Q. Zheng, B. Zhang, T. Ganguly, W. B. Tzeng,J.Mol. Spectrosc.284-285 (2013) 16-20.
(Mass-analyzed threshold ionization spectroscopy of trans-1-methoxynaphthalene cation and the methoxyl substitution effect)
[71] J.L. Lin, W.B. Tzeng, Phys. Chem. Chem. Phys. 2 (2000) 3759.
(Ionization energy of o-fluoroaniline and vibrational levels of o-fluoroaniline cation determined by mass-analyzed threshold ionization spectroscopy)
[72] J L. Lin, K.C. Lin, W. B. Tzeng, Appl. Spectrosc. 55 (2001) 120.
(Species-selected mass analyzed threshold ionization spectra of m-fluoroaniline cation)
[73] J.L. Lin, K.C. Lin, W. B. Tzeng, J. Phys. Chem. A 106 (2002) 6462.
(Mass analyzed threshold ionization spectroscopy of o-, m-, p-methylaniline cations: Vicinal substitution effects on electronic transition, ionization, and molecular vibration)
[74] Y. Xie, H.W. Su, W.B. Tzeng, Chem. Phys. Lett. 304 (2004) 182.
( Rotamers of m-aminophenol cation studied by mass analyzed threshold ionization spectroscopy and theoretical calculations)
[75] Y. Xie, J. L. Lin, W.B. Tzeng, Chem. Phys. 305 (2004) 285.
(Mass analyzed threshold ionization spectroscopy of p-aminophenol cation and the substitution effect)
[76] H. Su, M. Pradhan, W.B. Tzeng, Chem. Phys. Lett. 411 (2005) 86.
(Mass analyzed threshold ionization spectroscopy of p-cyanophenol cation and the CN substitution effect)
[77] H. Ikoma, K. Takazawa, Y. Emura, S. Ikeda, H. Abe, H. Hayashi, M.
Fujii, J. Chem. Phys. 105 (1996) 10201.
(Internal rotation of methyl group in o‐ and m‐toluidine cations as studied by pulsed field ionization–zero kinetic energy spectroscopy)
[78] Y. Xu, S.Y. Tzeng, V. Shivatare, K. Takahashi, B. Zhang, W.B.Tzeng, J. Chem. Phys. 142 (2015) 124314.
(Identification of four rotamers of m-methoxystyrene by resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy)
[79] F. Merkt, Annu. Rev. Phys. Chem., 48 (1997) 675.
(Molecule in high Rydberg state)
[80] W.A. Chupka, J. Chem. Phys. 99 (1993) 5800.
(Lifetimes of very high Rydberg states of aromatic molecules)
[81] W.A. Chupka, J. Chem. Phys. 98 (1993) 4520.
(Factors affecting lifetimes and resolution of Rydberg states observed in zero‐electron‐kinetic‐energy spectroscopy)
[82] J.L. Lin, W. B. Tzeng, J. Chem. Phys. 115 (2001) 743-751.
(Mass analyzed threshold ionization of deuterium substituted isotopomers of aniline and p-fluoroaniline: Isotope effect and site-specific electronic transition)
[83] G. Scoles, D. Bassi, U. Buck, D. Laine, Volume 1. (1988)
(Atomic and Molecular Beam Methods)
[84] J. H. Moore, C. C. Davis, M. A. Coplan, S. C. Greer, Westview Press, (2002).
(Building scientific apparatus)
[85] U. Brackmann, Volume 2 (1997).
( Lambdachrome. Laser Dye)
[86] C.R.C. Wang, C.C. Hsu, W.Y. Liu, W.C. Tsai, W.B. Tzeng, 65 (1994) 2776-2780.
(Determination of laser beam waist using photoionization time-of-flight mass spectrometer)
GAUSSIAN09
[87] M. J. Frisch and G. W. Trucks and H. B. Schlegel and G. E. Scuseria and M. A. Robb and J. R. Cheeseman and G. Scalmani and V. Barone and B. Mennucci and G. A. Petersson and H. Nakatsuji and M. Caricato and X. Li and H. P. Hratchian and A. F. Izmaylov and J. Bloino and G. Zheng and J. L. Sonnenberg and M. Hada and M. Ehara and K. Toyota and R. Fukuda and J. Hasegawa and M. Ishida and T. Nakajima and Y. Honda and O. Kitao and H. Nakai and T. Vreven and Montgomery, {Jr.}, J. A. and J. E. Peralta and F. Ogliaro and M. Bearpark and J. J. Heyd and E. Brothers and K. N. Kudin and V. N. Staroverov and R. Kobayashi and J. Normand and K. Raghavachari and A. Rendell and J. C. Burant and S. S. Iyengar and J. Tomasi and M. Cossi and N. Rega and J. M. Millam and M. Klene and J. E. Knox and J. B. Cross and V. Bakken and C. Adamo and J. Jaramillo and R. Gomperts and R. E. Stratmann and O. Yazyev and A. J. Austin and R. Cammi and C. Pomelli and J. W. Ochterski and R. L. Martin and K. Morokuma and V. G. Zakrzewski and G. A. Voth and P. Salvador and J. J. Dannenberg and S. Dapprich and A. D. Daniels and Ö. Farkas and J. B. Foresman and J. V. Ortiz and J. Cioslowski and D. J. Fox.
Gaussian 09, Revision A. 02, Gaussian. Inc, Wallingford, CT, 2009
[88] R. McWeeny, G. Dierksen, J. Chem. Phys. 49 (1968) 4852-4856.
(Self‐Consistent Perturbation Theory. II. Extension to Open Shells)
[89] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864-B871.
(Inhomogeneous Electron Gas)
[90] W. Kohn, L. J. Sham, Phys. Revs. 140 (1965) A1133-A1138.
(Self-Consistent Equations Including Exchange and Correlation Effects)
[91] A.D. Becke, J. Chem. Phys. 97 (1992) 9173.
(Density‐functional thermochemistry. II. The effect of the Perdew–Wang generalized‐gradient correlation correction)
[92] P.M.W. Gill, B.G. Johnson, J.A. Pople, M.J. Frisch, Chem. Phys. Lett.197 (1992) 499.
(The performance of the Becke-Lee-Yang-Parr (B-LYP) density functional theory with various basis sets)
[93] G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham, W.A.
Shirley, J. Mantzaris, J. Chem. Phys. 89 (1988) 2193.
(A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements)
[94] G.A. Petersson, M.A. Al-Laham, J. Chem. Phys. 94 (1991) 6081.
(A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms)
[95] J.B. Foresman, K.C. Casida, J.A. Pople, M.J. Frisch, J. Phys. Chem . 96 (1992) 135.
(Toward a systematic molecular orbital theory for excited states)
[96] M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, J. Chem. Phys.108 (1998) 4439.
(Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold)
[97] W.J. Hehre, R.F. Stewart, J.A. Pople. J. Chem. Phys. 51 (1969) 2657.
(Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals)
[98] E.B. Wilson, Physical Review. 45 (1934) 760.
(The Normal Modes and Frequencies of Vibration of the Regular Plane Hexagon Model of the Benzene Molecule)
[99] G. Varsanyi, L. Lang, Wiley, 1974
(Assignments for Vibrational Spectra of Seven Hundred
Benzene Derivatives)
[100] K.T. Huang, J.R. Lombardi, J. Chem. Phys. 51 (1969) 2338-1230.
(Dipole Moments of the Lowest Singlet π* ← π States in p‐Fluorophenol andp‐Fluoroaniline)
[101] J.R. Lombardi, J. Chem. Phys. 50 (1969) 3780-3783.
(Dipole Moments of the Lowest Singlet π* ← π States in Phenol and Aniline by the Optical Stark Effect)
[102] A. Gaber, M. Riese, J. Grotemeyer, J. Chem. Phys. A 112 (2008) 425-434.
(Mass Analyzed Threshold Ionization Spectroscopy of o-, m-, and p-Dichlorobenzenes. Influence of the Chlorine Position on Vibrational Spectra and Ionization Energy)