簡易檢索 / 詳目顯示

研究生: 林澤蒲
Lin, Tse-Pu
論文名稱: 以即時性漫反射傅立葉轉換紅外光譜儀探討乙醇氧化蒸氣重組在(Co, Rh)/(CeO2, YSZ)上之反應機制
Investigate the mechanism of oxidative steam reforming of ethanol on (Co, Rh)/(CeO2, YSZ) by in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy
指導教授: 王禎翰
Wang, Jeng-Han
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 72
中文關鍵詞: 即時性漫反射傅立葉轉換紅外光譜儀產氫氧化鈰釔安定氧化鋯乙醇氧化蒸汽重組
英文關鍵詞: in situ DRIFTS, hydrogen production, Rhodium, cobalt, CeO2, YSZ, oxidation steam reforming of ethanol
DOI URL: http://doi.org/10.6345/NTNU201900069
論文種類: 學術論文
相關次數: 點閱:189下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在我們目前的研究中,我們使用即時性漫反射傅立葉轉換紅外光譜儀(in situ DRIFTS IR),系統式的檢測不同水醇比和氧氣比例之(Co, Rh)/CeO2和Rh/(CeO2, YSZ)催化劑在乙醇氧化蒸氣重組的反應,而我們透過這方式,來推測不同催化劑以及不同反應條件下之反應機構。催化劑使用含浸法合成,並透過X-ray粉末繞射分析儀(XRD)、能量散射光譜儀 (EDS)、程序升溫還原反應(TPR)和光電子能譜儀 (XPS)來鑑定其晶格、成分以及氧化態。比較(Rh,Co)/ CeO2的乙醇氧化蒸氣重組反應,我們的結果發現,在Rh / CeO2上容易快速脫氫而形成酰基陽離子(CH3CO)中間體,進而分解成CH4和CO,顯示了Rh擁有優良的斷碳碳鍵活性。比較Rh /(CeO2 ,YSZ)上的反應,Rh / CeO2上的大量CO脫附,確定了氧化物載體的優良儲氧能力;另外,乙醛與乙酸顯著的反應,對於Rh / CeO2催化劑產生CO2也有明顯的影響,這也代表著它有助於氧化的過程。而反應的結果顯示,大量的水氣比例增加會使氫氣的產率升高以及得到較低的CO和較高的CH4選擇率,而較高的氧氣含量,會使得反應產生更多的氧化產物,比如CO和CO2。

    In our present study, we systematically examined the reaction of oxidative steam reforming on (Co, Rh)/CeO2 and Rh/(CeO2, YSZ) at various ethanol/steam/oxygen ratios by in situ Diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) to reveal the mechanisms in the different catalysts at varied operational conditions. The catalysts were initially fabricated by impregnation method and characterized by X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDS), Temperature programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) to identify their lattice, composition and oxidation states. Comparing reforming reactions on (Rh,Co)/CeO2, our results found the quick formation of acyl cation (CH3CO) intermediate, which easily decomposes to CH4 and CO, on Rh/CeO2, revealing the mechanism behind the excellent C-C bond cleavage activity of Rh. Comparing the reactions on Rh/(CeO2/YSZ), the abundant CO desorption from Rh/CeO2 identifies the superior oxygen storage capability of the oxide support; additionally, the obvious reaction of acetaldehyde to acetic acid, ultimately to CO2 on Rh/CeO2 ¬also suggests the capability assisting the oxidation process. The operational condition tests showed that higher steam ratio results better hydrogen yield as well as less CO and more CH4 selectivities, while the higher oxygen content yields more oxidative products of CO and CO2.

    致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 1-1 前言 1 1-2 乙醇氧化蒸氣重組反應 2 1-3 催化劑之金屬介紹 3 1-4 催化劑之載體介紹 4 1-4-1 螢石結構(Fluorine, AO2)-CeO2 4 1-4-2 YSZ(Yttria-stabilized zirconia)-ZrO2-Y2O3 5 1-5 研究目的及動機 6 第二章 實驗方法 7 2-1 催化劑製備 10 2-1-1 催化劑製備 10 2-2 催化劑鑑定 12 2-2-1 能量散射光譜儀 (Energy Dispersive X-Ray Spectroscopy, EDS) 12 2-2-2 X光繞射分析(X-Ray Diffraction analysis, XRD) 13 2-2-3 X光光電子光譜(X-Ray Photoelectron Spectroscopy, XPS) 14 2-2-4 程序升溫還原反應(Temperature Programmed Reduction, TPR) 16 2-3 催化劑反應活性測定 17 2-3-1 即時性漫反射式傅立葉轉換紅外光譜儀 (in situ DiffuseReflectance Infrared Fourier Transform Spectroscopy, in situ DRIFTS) 17 2-3-2 乙醇氧化蒸氣重組反應(Oxidative Steam Reforming of Ethanol, OSRE) 19 2-3-3 數據計算 23 第三章 結果與討論 24 3-1 能量散射光譜分析(EDS) 24 3-2 X-ray 粉末繞射(XRD) 25 3-3 X-ray光電子光譜(XPS) 29 3-4 程序升溫還原(TPR) 34 3-4-1 還原時間對氧化態之影響 34 3-4-2 不同還原時間對氧化態的影響 35 3-4-3 乙醇蒸氣重組反應後對催化劑之影響 38 3-5 即時性漫反射紅外線傅立葉轉換光譜儀分析 (in situ DRIFTS) 41 3-5-1 氧氣和水對催化劑反應之影響 44 3-5-2 金屬改變對催化劑反應之影響 51 3-5-3 不同載體對催化劑反應之影響 55 3-5-4 金屬和載體改變對反應機構之影響 59 3-6 乙醇氧化蒸氣重組反應(OSRE) 62 3-6-1 水醇比(1:3,1:5,1:7,1:10)對反應之影響 62 第四章 結論 67 第五章 參考資料 69

    1. El-Nashar, A.M., Effect of dust deposition on the performance of a solar desalination plant operating in an arid desert area. Solar energy, 2003. 75(5): p. 421-431.
    2. Fierro, V., O. Akdim, and C. Mirodatos, On-board hydrogen production in a hybrid electric vehicle by bio-ethanol oxidative steam reforming over Ni and noble metal based catalysts. Green Chemistry, 2003. 5(1): p. 20-24.
    3. Wang, Z., et al., Nitrogen-doped porous carbons with high performance for hydrogen storage. International Journal of Hydrogen Energy, 2016. 41(20): p. 8489-8497.
    4. Fathima, A.A., et al., Direct utilization of waste water algal biomass for ethanol production by cellulolytic Clostridium phytofermentans DSM1183. Bioresource technology, 2016. 202: p. 253-256.
    5. Soykal, I.I., H. Sohn, and U.S. Ozkan, Effect of support particle size in steam reforming of ethanol over Co/CeO2 catalysts. ACS Catalysis, 2012. 2(11): p. 2335-2348.
    6. Peiretti, L.F., et al., CeO 2 and Co 3 O 4–CeO 2 nanoparticles: effect of the synthesis method on the structure and catalytic properties in COPrOx and methanation reactions. Journal of materials science, 2016. 51(8): p. 3989-4001.
    7. Turczyniak, S., et al., Effect of the surface state on the catalytic performance of a Co/CeO2 ethanol steam-reforming catalyst. Journal of catalysis, 2016. 340: p. 321-330.
    8. Wang, F., et al., Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation. Journal of the American Chemical Society, 2016. 138(19): p. 6298-6305.
    9. Zhang, M., et al., Insight into the effects of the oxygen species over Ni/ZrO2 catalyst surface on methane reforming with carbon dioxide. Applied Catalysis B: Environmental, 2019. 244: p. 427-437.
    10. Bugrova, T.A., et al., Oxidative dehydrogenation of ethane with CO2 over CrOx catalysts supported on Al2O3, ZrO2, CeO2 and CexZr1-xO2. Catalysis Today, 2018.
    11. Alirezaei, I., A. Hafizi, and M. Rahimpour, Syngas production in chemical looping reforming process over ZrO2 promoted Mn-based catalyst. Journal of CO2 Utilization, 2018. 23: p. 105-116.
    12. Konsolakis, M., et al., Hydrogen production by ethanol steam reforming (ESR) over CeO2 supported transition metal (Fe, Co, Ni, Cu) catalysts: Insight into the structure-activity relationship. Catalysts, 2016. 6(3): p. 39.
    13. Li, D., X. Li, and J. Gong, Catalytic Reforming of Oxygenates: State of the Art and Future Prospects. Chem Rev, 2016. 116(19): p. 11529-11653.
    14. Pirez, C., et al., Steam reforming, partial oxidation and oxidative steam reforming for hydrogen production from ethanol over cerium nickel based oxyhydride catalyst. Applied Catalysis A: General, 2016. 518: p. 78-86.
    15. Fukuhara, C., et al., A novel nickel-based structured catalyst for CO 2 methanation: A honeycomb-type Ni/CeO 2 catalyst to transform greenhouse gas into useful resources. Applied Catalysis A: General, 2017. 532: p. 12-18.
    16. Kubacka, A., M. Fernandez-Garcia, and A. Martinez-Arias, Catalytic hydrogen production through WGS or steam reforming of alcohols over Cu, Ni and Co catalysts. Applied Catalysis a-General, 2016. 518: p. 2-17.
    17. Zhang, B., et al., Hydrogen production by steam reforming of ethanol over an Ir/CeO2 catalyst: Reaction mechanism and stability of the catalyst. International Journal of Hydrogen Energy, 2008. 33(16): p. 4377-4386.
    18. Hung, C.-C., et al., Oxidative steam reforming of ethanol for hydrogen production on M/Al2O3. International Journal of Hydrogen Energy, 2012. 37(6): p. 4955-4966.
    19. Zeng, G.M., Y.D. Li, and U. Olsbye, Kinetic and process study of ethanol steam reforming over Ni/Mg(Al)O catalysts: The initial steps. Catalysis Today, 2016. 259: p. 312-322.
    20. Kourtelesis, M., et al., Influence of the Support on the Reaction Network of Ethanol Steam Reforming at Low Temperatures Over Pt Catalysts. Topics in Catalysis, 2015. 58(18-20): p. 1202-1217.
    21. Garbarino, G., et al., A study of the deactivation of low loading Ni/Al2O3 steam reforming catalyst by tetrahydrothiophene. Catalysis Communications, 2013. 38: p. 67-73.
    22. Zanchet, D., et al., Toward Understanding Metal-Catalyzed Ethanol Reforming. ACS Catalysis, 2015. 5(6): p. 3841-3863.
    23. Sharma, P.K., et al., Hydrogen generation from ethanol by steam reforming using a Rh catalyst supported over low acidic Al2O3. Reaction Kinetics Mechanisms and Catalysis, 2016. 117(2): p. 655-674.
    24. Osorio-Vargas, P., et al., Improved ethanol steam reforming on Rh/Al2O3 catalysts doped with CeO2 or/and La2O3: Influence in reaction pathways including coke formation. Applied Catalysis a-General, 2015. 505: p. 159-172.
    25. Maia, T.A., J.M. Assaf, and E.M. Assaf, Study of Co/CeO2-gamma-Al2O3 catalysts for steam and oxidative reforming of ethanol for hydrogen production. Fuel Processing Technology, 2014. 128: p. 134-145.
    26. Karim, A.M., et al., Catalytic Roles of Co-0 and Co2+ during Steam Reforming of Ethanol on Co/MgO Catalysts. Acs Catalysis, 2011. 1(4): p. 279-286.
    27. Chou, C.-C., C.-F. Huang, and T.-H. Yeh, Investigation of ionic conductivities of CeO2-based electrolytes with controlled oxygen vacancies. Ceramics International, 2013. 39: p. S627-S631.
    28. Kim, S.S., S.J. Lee, and S.C. Hong, Effect of CeO2 addition to Rh/Al2O3 catalyst on N2O decomposition. Chemical Engineering Journal, 2011. 169(1-3): p. 173-179.
    29. Li, H., et al., Preparation and Properties of Mesoporous CeO2 Nanomaterials. Rare Metal Materials and Engineering, 2015. 44(5): p. 1269-1272.
    30. Vonk, V., et al., Atomic structure and composition of the yttria-stabilized zirconia (111) surface. Surf Sci, 2013. 612(100): p. 69-76.
    31. Rico-Pérez, V., E. Aneggi, and A. Trovarelli, The Effect of Sr Addition in Cu- and Fe-Modified CeO2 and ZrO2 Soot Combustion Catalysts. Catalysts, 2017. 7(12): p. 28.
    32. Bugrova, T.A., et al., Oxidative dehydrogenation of ethane with CO 2 over CrO x catalysts supported on Al 2 O 3 , ZrO 2 , CeO 2 and Ce x Zr 1-x O 2. Catalysis Today, 2018.
    33. Li, Y., X. Wang, and C. Song, Spectroscopic characterization and catalytic activity of Rh supported on CeO2-modified Al2O3 for low-temperature steam reforming of propane. Catalysis Today, 2016. 263: p. 22-34.
    34. <190507 10RhZrO2 CeO2 TPR.pdf>.
    35. Yu, S.W., et al., The effect of accessible oxygen over Co3O4-CeO2 catalysts on the steam reforming of ethanol. International Journal of Hydrogen Energy, 2014. 39(35): p. 20700-20711.
    36. Ferencz, Z., et al., Effects of Support and Rh Additive on Co-Based Catalysts in the Ethanol Steam Reforming Reaction. Acs Catalysis, 2014. 4(4): p. 1205-1218.
    37. Lukashuk, L., et al., Operando XAS and NAP-XPS studies of preferential CO oxidation on Co 3 O 4 and CeO 2 -Co 3 O 4 catalysts. Journal of Catalysis, 2016. 344: p. 1-15.
    38. Xu, W.Q., et al., Steam Reforming of Ethanol on Ni/CeO2: Reaction Pathway and Interaction between Ni and the CeO2 Support. Acs Catalysis, 2013. 3(5): p. 975-984.
    39. Sharma, P.K., et al., Hydrogen generation by ethanol steam reforming over Rh/Al2O3 and Rh/CeZrO2 catalysts: A comparative study. International Journal of Hydrogen Energy, 2016. 41(14): p. 6123-6133.
    40. Deluga, G., et al., Renewable hydrogen from ethanol by autothermal reforming. Science, 2004. 303(5660): p. 993-997.

    下載圖示
    QR CODE