研究生: |
郭柏汝 Guo, Bo-Ru |
---|---|
論文名稱: |
二維二硒化鈮之約瑟夫森效應及超導量子位元的應用 Towards applications of 2D NbSe2 based Josephson effect and superconducting Qubits |
指導教授: |
藍彥文
Lan, Yann-Wen 陳啟東 Chen, Chii-Dong |
口試委員: |
藍彥文
Lan, Yann-Wen 陳啟東 Chen, Chii-Dong 邱奎霖 Chiu, Kuei-Lin 郭華丞 Kuo, Watson |
口試日期: | 2021/07/21 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 2H-二硒化鈮 、超導量子位元 、拉曼光譜 |
英文關鍵詞: | 2H-NbSe2, superconducting qubits, Raman spectrum |
研究方法: | 實驗設計法 、 現象分析 |
DOI URL: | http://doi.org/10.6345/NTNU202101036 |
論文種類: | 學術論文 |
相關次數: | 點閱:158 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具有六角蜂巢晶格結構的二維材料(例如:石墨烯以及2H族過渡金屬二硫族化物)所蘊含的特殊物理性質,可做為未來對基礎材料科學、電子元件應用,以及資訊傳輸領域應用當中的替代選擇。於部分六角蜂巢晶格的二維材料當中,其特殊晶格結構以及原子軌域組合,除了賦予材料空間反轉對稱破壞性以及時間反轉對稱性外,還分別授予坐落於K以及K’點處之布洛赫函數於單位晶格內具有兩方向相反的內稟環狀電流。由於其方向相反,對於載子而言則是多出了有別於一般電子自旋的能谷電子自由度(valley DOF)。
由於此種能谷電子自由度對應了相反方向的能谷磁矩,於光學應用上則是對於不同圓偏振光有著不同的選擇規則。此種電子與晶格原子之間的交互作用,亦可以推廣應用至量子資訊領域。於量子資訊領域中,以量子位元作為運算基本單位,其中量子位元可以是任意二能階系統,例如:電子自旋、離子阱和超導量子位元等等。超導量子位元則是以電路結構作為基礎打造而成的人造原子系統,其中Google和IBM團隊已投入大量研究經費鑽研其富含的物理特性。隨著二維材料與量子資訊興起,是否能將二維材料獨特之特性應用至超導量子位元系統中,是一個尚未被驗證的議題。
因此,本學位論文將探討二維超導材料2H-二硒化鈮(NbSe2)之特性及在量子計算領域中的應用性。將呈現: (1)基本材料特性,(2)透過圓偏振拉曼光譜分析2H- NbSe2內稟能谷電子耦合自旋電子特性,(3) 2H-二硒化鈮超導電子以及對應量子傳輸特性,及(4) 基於2H-二硒化鈮超導量子位元微波特性,並加以分析討論。此項工作有助於作為研究二維材料超導量子位元的基礎。
2D materials with hexagonal-honeycomb modifications, e.g., graphene systems, and 2H-TMDCs provide alternative options for materials science, electronics, and information processing applications. The special atomic structures in such the system endow the electronic properties with broken-spatial inversion symmetry coupled with time-reversal symmetry that generates system individual valley degree of freedom (DOF) in close analogy to typical spin DOF but with significant differences. The phase winding of Bloch functions around K and K’-points generates intracellular current circulation flowing within the plane results in the distinct valley magnetic moment between K and K’-valleys. This fact features the phenomenon of valley-dependent interband transitions with different circular polarized light.
The interaction between electrons and atoms would probably provide other properties in carrier propagations, optical selection rules, or can even extend to the field of quantum information processing. Furthermore, artificial superconducting qubits commonly incorporate Josephson tunneling junctions as the elementary blocks for scalable quantum information processing and have widely been studied over several groups, including Google and IBM, over the world. With the rise of 2D materials, it would be practical to answer if 2D material can be properly incorporated into this field.
Therefore, this thesis would aim at the investigations of the fundamental properties of 2H-NbSe2, and evaluate the possibilities that adopts 2H-NbSe2 as the material platform for the realizations of superconducting qubit based quantum information processing. The detailed demonstrations of (i) basic material characterizations, (ii) circularly polarized Raman spectroscopy, (iii) electrical transport measurement, and (iv) RF-characterizations of 2H-NbSe2 based superconducting qubit, will be comprehensively discussed. These efforts can be considered as the foundations for the exploration of 2D materials-based superconducting qubits.
[1] Ajayan, Pulickel, Philip Kim, and Kaustav Banerjee. "van der Waals materials." Physics Today 69.9 (2016): 38.
[2] Liu, Xiaolong, and Mark C. Hersam. "2D materials for quantum information science." Nature Reviews Materials 4.10 (2019): 669-684.
[3] Wang, Qing Hua, et al. "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides." Nature nanotechnology 7.11 (2012): 699-712.
[4] Zhang, Xin, et al. "Review on the Raman spectroscopy of different types of layered materials." Nanoscale 8.12 (2016): 6435-6450.
[5] He, Rui, et al. "Interlayer breathing and shear modes in NbSe2 atomic layers." 2D Materials 3.3 (2016): 031008.
[6] Silva-Guillén, José Ángel, et al. "Electronic structure of 2H-NbSe2 single-layers in the CDW state." 2D Materials 3.3 (2016): 035028.
[7] Ugeda, Miguel M., et al. "Characterization of collective ground states in single-layer NbSe2." Nature Physics 12.1 (2016): 92-97.
[8] Revolinsky, E., G. A. Spiering, and D. J. Beerntsen. "Superconductivity in the niobium-selenium system." Journal of Physics and Chemistry of Solids 26.6 (1965): 1029-1034.
[9] Frindt, R. F. "Superconductivity in ultrathin NbSe2 layers." Physical Review Letters 28.5 (1972): 299.
[10] Chen, Cliff, et al. "Strain-Controlled Superconductivity in Few-Layer NbSe2." ACS Applied Materials & Interfaces 12.34 (2020): 38744-38750.
[11] Sinko, Michael R., et al. "Superconducting contact and quantum interference between two-dimensional van der Waals and three-dimensional conventional superconductors." Physical Review Materials 5.1 (2021): 014001.
[12] Ashcroft, Neil W., and N. David Mermin. "Solid state physics." (1976).
[13] Baker, Matthew J., Caryn S. Hughes, and Katherine A. Hollywood. "Raman spectroscopy." Biophotonics: Vibrational Spectroscopic Diagnostics (2016): 1-94.
[14] Zhang, Xin, et al. "Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material." Chemical Society Reviews 44.9 (2015): 2757-2785.
[15] Raab, Reilly P. "Single-Gate Error for Superconducting Qubits Imposed by Sideband Products of IQ Mixing." (2015).
[16] Krantz, Philip, et al. "A quantum engineer's guide to superconducting qubits." Applied Physics Reviews 6.2 (2019): 021318.
[17] Schuster, David Isaac. Circuit quantum electrodynamics. Yale University, 2007.
[18] Bravyi, Sergey, David P. DiVincenzo, and Daniel Loss. "Schrieffer–Wolff transformation for quantum many-body systems." Annals of physics 326.10 (2011): 2793-2826.
[19] Josephson, Brian David. "Possible new effects in superconductive tunnelling." Physics letters 1.7 (1962): 251-253.
[20] Tafuri, Francesco, ed. Fundamentals and Frontiers of the Josephson Effect. Vol. 286. Springer Nature, 2019.
[21] Wallraff, Andreas, et al. "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics." Nature 431.7005 (2004): 162-167.
[22] Bretheau, L., et al. "Exciting Andreev pairs in a superconducting atomic contact." Nature 499.7458 (2013): 312-315.
[23] Müller, Clemens, Jared H. Cole, and Jürgen Lisenfeld. "Towards understanding two-level-systems in amorphous solids: insights from quantum circuits." Reports on Progress in Physics 82.12 (2019): 124501.
[24] Agarwal, Tarun Kumar, et al. "Performance comparison of s-Si, In 0.53 Ga 0.47 As, monolayer BP, and WS2-based n-MOSFETs for future technology nodes—Part I: Device-level comparison." IEEE Transactions on Electron Devices 66.8 (2019): 3608-3613.
[25] Lee, Kan-Heng, et al. "Two-dimensional material tunnel barrier for josephson junctions and superconducting qubits." Nano letters 19.11 (2019): 8287-8293.
[26] Joel, I., et al. "Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures." Nature nanotechnology 14.2 (2019): 120-125.
[27] Chiu, Kuei-Lin, et al. "Flux Tunable Superconducting Quantum Circuit Based on Weyl Semimetal MoTe2." Nano Letters 20.12 (2020): 8469-8475. (S- MoTe2-S側向傳輸架構)
[28] van der Pauw, Leo J. "A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape." Philips technical review 20 (1958): 220-224.
[29] Kreissl, Hannah T., et al. "Structural studies of bulk to nanosize niobium oxides with correlation to their acidity." Journal of the American Chemical Society 139.36 (2017): 12670-12680.
[30] Huang, Y. H., et al. "Electronic transport in NbSe2 two-dimensional nanostructures: semiconducting characteristics and photoconductivity." Nanoscale 7.45 (2015): 18964-18970.
[31] Xi, Xiaoxiang, et al. "Strongly enhanced charge-density-wave order in monolayer NbSe2." Nature nanotechnology 10.9 (2015): 765-769.
[32] Chen, Shao-Yu, et al. "Helicity-resolved Raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic layers." Nano letters 15.4 (2015): 2526-2532.
[33] Jones, R. Clark. "A new calculus for the treatment of optical systemsi. description and discussion of the calculus." Josa 31.7 (1941): 488-493.
[34] Talochkin, A. B. "Circularly polarized Raman scattering in silicon." Journal of Raman Spectroscopy 51.1 (2020): 201-206.
[35] Tatsumi, Yuki, and Riichiro Saito. "Interplay of valley selection and helicity exchange of light in Raman scattering for graphene and MoS2." Physical Review B 97.11 (2018): 115407.
[36] Hsieh, Tzu-Chi, Mei-Yin Chou, and Yu-Shu Wu. "Electrical valley filtering in transition metal dichalcogenides." Physical Review Materials 2.3 (2018): 034003.
[37] Chen, Feng-Wu, and Yu-Shu G. Wu. "Theory of field-modulated spin valley orbital pseudospin physics." Physical Review Research 2.1 (2020): 013076.
[38] Yang, Ming-Jay, et al. "Quantum state transfer between valley and photon qubits." Physical Review B 95.7 (2017): 075407.
[39] Xi, Xiaoxiang, et al. "Ising pairing in superconducting NbSe2 atomic layers." Nature Physics 12.2 (2016): 139-143.
[40] Kalacheva, D., et al. "Improving the quality factor of superconducting resonators by post-process surface treatment." AIP Conference Proceedings. Vol. 2241. No. 1. AIP Publishing LLC, 2020.
[41] Liu, Liwei, et al. "Direct identification of Mott Hubbard band pattern beyond charge density wave superlattice in monolayer 1T-NbSe 2." Nature communications 12.1 (2021): 1-7.