簡易檢索 / 詳目顯示

研究生: 林幼淳
論文名稱: 波浪動能影響海溫結構之數值模擬研究
Effects of wave-induced mixing on the temperature structure
指導教授: 吳朝榮
學位類別: 碩士
Master
系所名稱: 海洋環境科技研究所
Graduate Institute of Marine Environmental Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 56
中文關鍵詞: 波浪數值模式溫度結構
論文種類: 學術論文
相關次數: 點閱:193下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過數值模擬的方式,分析波浪對海水溫度的影響。首先利用波浪模式將海表面波浪的大小參數化,再換算為波浪引起之混合動能,並將混合動能定義為 值,希望透過波浪所引起之混合動能,去改善一般海流模式在夏、秋時期對於表層溫度模擬較差的問題。
      本研究所使用的模式分別為MASNUM波浪模式與南海模式,將波浪模式計算的波浪動能依照不同程度放入南海模式內,並配合南海SEATS測站的溫度資料作為模式的驗證。比較SEATS測站資料與海流數值模式的結果顯示,在秋季的時候,海流模式對溫度的模擬確實較差,而包含 值的海流-波浪耦合模式能夠加強表層海水的混合,改善海流模式對溫度模擬較差的問題。然而增加的混合動能卻也會加深其他月份的混合層深度,造成其他月份有較大的誤差。
      此外,本研究選用強颱—玲玲(2001) 作為研究強風下波浪對溫度影響的對象,並將原波浪模式中線性拖曳係數改變為Oey et al.(2006)的拖曳係數,減低因高風速造成的誤差。結果顯示,包含 值的海流-波浪耦合模式與一般海流模式間的差異在於 值的作用會導致颱風過後的湧升流深度不同。

    致謝 1 摘要 II 目錄 III 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究區域介紹 3 1.4 研究目的 5 第二章 研究資料與方法 7 2.0 前言 7 2.1 模式介紹 7 2.1.1 MASNUM波浪模式 7 2.1.2 南海模式(South China Sea Model) 11 2.2風拖曳係數 13 2.3 研究方式 16 第三章 研究資料比較與分析 18 3.1 值分布型態 18 3.1.1 值的全球分布 18 3.1.2 南海內的 值分布 19 3.2 垂直混合對溫度結構的影響 20 3.2.1 觀測值與模式結果的溫度結構比較 20 3.2.2 SEATS測站溫度與模式結果的誤差 22 3.2.3 混合層深度的變動 23 3.2.4 混合層深度的誤差 24 3.3 強風下的溫度結構變化 25 3.3.1 不同拖曳係數下 值的改變 25 3.3.2 颱風經過後模式的溫度差異 26 第四章 結論 28 4.1 結論 28 參考文獻 52

    梁文德(2002):南海上層海溫及海流變化之研究,博士論文,國立台灣大學海洋研究所。

    袁業立,潘增弟,高志華等(1992):LAGFD-WAM海浪數值模式: I. 基本物理模型,海洋學報,14,1-7。

    袁業立,華峰,潘增弟等(1992):LAGFD-WAM海浪數值模式: II. 區域性特徵線嵌入格式及其應用,海洋學報,14,12-24。

    Chern, C.-S., and J. Wang (2003): Numerical study of the upper-layer circulation in the South China Sea. Journal of Oceanography, 59, 11-24.

    Chiang T. -L., C.-R. Wu, and S.-Y. Chao (2008): Physical and geographical origins of the South China Sea Warm Current. Journal of Geophysical Research, 113, C08028.

    Chiang T. -L. (2010): Simulations and interpretations on mesoscale eddy, Warm Current, and typhoon-induced temperature drop in the South China Sea. PhD dissertation, 90 pp., National Taiwan Normal University, Taipei.

    Chu, P. C., S. Lu, and Y. Chen (1997): Temporal and spatial variabilities of the South China Sea surface temperature anomaly. Journal of Geophysical Research, 102(9), 20937-20955.

    Ezer, T. (2000): On the seasonal mixed layer simulated by a basin-scale ocean model and the Mellor-Yamada turbulence scheme, Journal of Geophysical Research, 105, 16843-16855.

    Ezer, T. and G. L. Mellor (1997): Simulations of the Atlantic Ocean with a free surface sigma coordinate ocean model. Journal of Geophysical Research, 102, 15647-15657.

    Hsin, Y.-C., C.-R. Wu, and P.-T. Shaw (2008): Spatial and Temporal Variations of the Kuroshio East of Taiwan, 1982-2005: A numerical study. Journal of Geophysical Research, 113, C04002.

    Ho, C. –R., Q. Zheng, Y. S. Soong, N. -J. Kuo and J. -H. Hu (2000): Seasonal variability of sea surface height in the South China Sea observed with Topex/Poseidon altimeter data. Journal of Geophysical Research, 105 (C6), 13981-13990.

    Hu, J., H. Kawamura, H. Hong, and Y. Qi (2000): A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion. Journal of Oceanography, 56, 607-624.

    Kantha, L. H., and C. A. Clayson (1994): An improved mixed layer model for geophysical applications, Journal of Geophysical Research, 99, 25, 235-25, 266.

    Liu, K. -K., S.-Y. Chao, J. Marra, and A. Snidvongs (2004): Monsoonal Forcing and Biogeochemical Environments of Outer Southeast Asia Seas. In: Robinson, A., Brink, K.H. (Eds.), The Sea 14A, The Global Coastal Ocean: Interdisciplinary Regional Studies and Synthesis, Harvard Univ. Press, Cambridge.

    Liu, Q., Y. Jia, P. Liu and Q. Wang (2001): Seasonal and Intraseasonal Thermocline Variability in the Central South China Sea. Geophysical Research Letters, 28(23): 4467-4470.

    Ma, J., F. Qiao (2004): Simulation and analysis on seasonal variability of average salinity in the Yellow Sea. Chinese Journal Oceanology and Limnology, 22(3): 306-313.

    Ma, J., F. Qiao, C. Xia and Y. Yang (2004): Tidal effects on temperature front in the Yellow Sea. Chinese Journal Oceanology and Limnology, 22(3), 314-321.

    Martin, P. J. (1985): Simulation of the mixed layer at OWS November and Papa with several models, Journal of Geophysical Research, 90, 581-597.

    Mellor, G. L., (2001): One dimensional, ocean surface alyer modeling: A problem and a solution. Journal of Physical Oceanography, 131, 790-809.

    Mellor, G. L., (2003): The three-dimensional current and wave equations. Journal of Physical Oceanography, 33, 1978-1989.

    Mellor, G. L. and A. F. Blumberg, (2004): Wave breaking and ocean surface layer thermal response. Journal of Physical Oceanography, 34, 693-698.

    Mellor, G. L., and Yamada, T., (1982): Development of a turbulence closure model for geophysical fluid problems. Review of Geophysics and Space Physics. 20, 851-875.

    Milliff, R.F., Large, W.G., Morzel, J., Danabasoglu, G., Chin, T.M. (1999): Ocean general circulation model sensitivity to forcing from scatterometer winds. Journal of Geophysical Research, 104, 11337-11358.

    Oey, L.-Y., T. Ezer, D.-P. Wang, S.-J. Fan, and X.-Q. Yin, 2006: Loop current warming by Hurricane Wilma. Geophysical Research Letters, 33, L08613.

    Qiao, F., Y. Yuan, Y. Yang, Q. Zheng, C. Xia, and J. Ma, (2004a): Wave-induced mixing in the upper ocean: Distribution and application in a global ocean circulation model. Geophysical Research Letters, 31, L11303.

    Qiao, F., J. Ma, Y. Yang, and Y. Yuan, (2004b): Simulation of the temperature and salinity along 36°N in the Yellow Sea with a wave-current coupled model, Journal of the Korean Society of Oceanography, 39(1): 35-45.

    Shaw, P.-T., and S.-Y. Chao (1994): Surface circulation in the South China Sea. Deep-Sea Research I, 41, 1663-1683.

    Shang, S., L. L, F. Sun, J. Wu, C. Hu, D. Chen, X. Ning, Y. Qiu, C. Zhang and S. Shang (2008): Changes of temperature and bio-optical properties in the South China Sea in response to Typhoon Lingling, 2001. Geophysical Research Letters, 35, L10602.

    Stacey, M. W., (1999): Simulations of the wind-forced near-surface circulation in Knight Inlet: a parameterization of the roughness length. Journal of Physical Oceanography, 29, 1363-1367

    Trenberth, K. E., W. G. Large, and J. G. Olson, 1989: The effective drag coefficient for evaluating wind stress over the oceans. Journal of Climate, 2, 1507–1516.

    Wu, C.-R. and Y.-C. Hsin (2005): Volume transport through the Taiwan Strait : a numerical study. Terrestrial, Atmospheric and Oceanic Sciences, 16(2), 377-391.

    Wu, C.-R. and T.-L. Chiang (2007): Mesoscale eddies in the northern South China Sea. Deep Sea Research II, 54, 1575-1588.

    Wyrtki, K. (1961): Physical Oceanography of the Southeast Asian Waters, Scientific Results of Marine Investigation of the South China Sea and the Gulf of Thailand. NAGA report Vol. 2, Scripps Inst. Oceanography, La Jolla, California, 195pp.

    Yang, Y., F. Qiao, C. Xia, J. Ma and Y. Yuan (2004): Wave-induced mixing in the Yellow Sea. Chinese Journal Oceanology and Limnology, 22(3): 322-326.

    Yang, Y., F. Qiao, W. Zhao, Y. Teng and Y. Yuan (2005): The development and application of MASNUM wave numerical model in spherical coordinates (in Chinese). Acta Oceanologica Sinica, 27(2), 1-7.

    Yuan, Y., F. Qiao, F. Hua, and Z. Wan (1999): The development of a coastal circulation numerical model: 1. wave-induced mixing and wave- current interaction, Journal of Hydrodynamics, Series A, 14, 1-8

    下載圖示
    QR CODE