簡易檢索 / 詳目顯示

研究生: 張明成
論文名稱: Ni-P-PTFE複合層化學鍍製備與其抗沾黏特性之研究
Study on chemical plating and anti-adhesion characteristics of Ni-P-PTFE composite layer
指導教授: 楊啟榮
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 105
中文關鍵詞: 鎳磷合金鐵氟龍抗沾黏性無電鍍接觸角
英文關鍵詞: Ni-P alloy, Teflon, anti-adhesion, chemical plating, contact angle
論文種類: 學術論文
相關次數: 點閱:482下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎳磷合金(Ni-P alloy)有優異的硬度(> 600 Hv)、耐磨耗及化學耐蝕性,已為機械、模具、汽車、光電及電子製造等領域廣泛的應用。聚四氟乙烯(鐵氟龍) (poly-tetra-fluoro-ethylene, PTFE)亦具有優異之自潤滑性(摩擦係數極低)、表面抗粘黏性、超疏水自潔性、耐腐蝕性、絕緣性,在生化、醫療與食品相關器具已有廣泛應用。模造成型之模仁表面如沉積 PTFE之薄膜,可使模仁具有極佳之脫模與離型效果,避免壓印或射出成型之高分子材料沾黏於模仁表面,特別是當進行微/奈米等級結構之成型時,此沾黏現象特別容易發生。然而,此PTFE薄膜一般是以蒸鍍、旋鍍、噴塗、浸漬等方式塗佈於模仁表面,則於脫模離型過程中PTFE薄膜容易產生剝離脫落現象,致使模仁的耐用性不佳,故必須提出其他有效的解決方案。
    因此,本研究在化學鍍(無電鍍)(electroless plating)鎳磷合金(Ni-P alloy)的程序中,加入0.2 μm之PTFE顆粒,以進行Ni-P/PTFE複合層之製備。此複合層在應用時,可兼具鎳磷合金優異之硬度與耐磨耗性,以及PTFE膜之低摩擦係數、超撥水性、高抗沾黏等特性。此外,由於PTFE顆粒均勻地鑲嵌於鎳磷合金鍍層內部與表面,顆粒具有不易脫落的特性,可明顯改善僅PTFE塗覆於模仁表面,所造成之模仁耐用性不佳的缺點。化學鍍實驗中分別控制鍍液pH值、操作溫度,PTFE顆粒添加量、界面活性劑FC-134濃度等參數,探討Ni-P/PTFE複合層之析鍍速率、複合層中PTFE之沉積量、微硬度的影響,以及與抗沾黏、自潔性、防污性功能相關之接觸角特性。
    實驗結果顯示鍍浴的pH值必須控制在4.80-4.92範圍內,以維持鍍液的穩定性。溫度的提升,析鍍膜可獲得較佳之接觸角度,但隨著浴溫的增加,析鍍速率反而會減少,例如,在85 ℃操作條件下鍍層的接觸角為113.47o、鍍率為15.8 m/hr,95℃時接觸角為146.29o、鍍率為5.7 m/hr。析鍍時間與沉積厚度呈線性關係,時間愈長可得較厚之薄膜,但鍍液中PTFE含量超過7.5 cc/L,沉積速率受到限制反而減緩。杜邦公司(Du Pont)的PTFE懸浮液,其鍍層品質深受界面活性劑FC-134的影響,其最佳條件為95 ℃鍍液含300 mole/L FC-134、PTFE含量7.5㏄/L、化鍍20 min,可得接觸角度140.01°,鍍層厚度6.5 m、平均硬度173.54 Hv。使用日本World Metal Co, LTD 的PTFE懸浮液,其鍍液可以不使用FC-134,在95℃浴溫、PTFE含量7.5㏄/L、化鍍20 min的最佳條件下,可得接觸角度147.70°,鍍層厚度5.5 m、平均硬度160.80 Hv。目前的研究進度已獲得超疏水性之Ni-P-PTFE複合層,並應用析鍍於具有微結構之Ni-Co模仁表面,可得接觸角141.42°,且實際進行熱印壓模(Hot embossing)之測試,經過壓膜與脫膜實驗後,量測接觸角為137.89°。因此,本研究所製備之Ni-P-PTFE複合層有抗沾黏的能力,可助Ni-Co模仁之離型性效果。

    Excellent hardness(>600HV), abrasion and chemical corrosion resistance has a wide range of applications in areas such as machinery、molds、photo electronics and electronics manufacturing. Poly-tera-fluoro-ethylene also has its excellent self-lubricity、surface anti-sticky、super hydrophobic self-cleaning、corrosion resistance、insulation resistance, has been widely used in biochemical、medical、and food-related utensils. The mold caused by the type of mold surface, such as deposition of thin film of PTFE has excellent stripping and releasing effect, to avoid embossing or injection molding of the polymer material sticking in the mold surface, especially when micro / nano-level structure of the molding, this adhesion phenomenon is particularly easy to occur. However, this PTFE film coating on the surface of the mold generally based on the method of vapor deposition、spin coating 、spraying、dipping, etc, is easily generate the phenomenon of peeled off in the process of stripping from the mold which result in poor durability. So it must propose another effective solutions.
    Therefore, Therefore, in this research, the procedures for the chemical plating of Ni-P alloy, we add 0.2 μm PTFE particles in order to prepare the Ni-P-PTFE composite layer. This complex layer has both the superior hardness、wear resistance and low coefficient of friction、super water-repellent、high anti-sticking properties of the PTFE membrane. In addition, due to the PTFE particles uniformly embedded in a nickel-phosphorus alloy plating in internal part and outer surface, the particles have the characteristics of not easy to fall off, it can significantly improve the disadvantage of PTFE coated on the surface of the mold, caused by the poor durability of the mold. In electroless plating experiments, we control the parameters of pH value、the operating temperature、the amount of the PTFE particles are added、surfactant FC-134 concentration to investigate the plating rate of Ni-P-PTFE composite layer、the deposition amount of the PTFE composite layer、the impact of micro-hardness and contact angle characteristics associated with anti-adhesion、self-cleaning、anti-fouling features.
    The experimental results show that the pH value of the plating bath must be controlled within the 4.80-4.92 ranges, in order to maintain the stability. The plating film can has a good contact angle by elevating the bath temperature, but with the increase in the bath temperature, the plating rate instead will be reduced, for example, the contact angle of the coating film is 1l3.47° at 85 ℃ operating conditions, the plating rate is 15.8 μm /hr ; the contact angle of the coating film is 146.29° at 95 °C, the plating rate is 5.7 μm/hr. Plating time and deposition thickness shows the linear relationship, the longer time may have a thicker film, but the PTFE content in the bath of more than 7.5 cc/L, the deposition rate is limited and slow. The suspension of PTFE of Du Pont Company (Du Pont), its coating quality is deeply influence by the surfactant FC-134, and the optimum conditions is 95 ℃ bath containing 300 μmole / L FC-134、PTFE content 7.5 cc/L、plating 20 min, the contact angle 140.01° is get, coating thickness is 6.5 μm, the average hardness is 173.54 Hv. By using the PTFE suspension of World Metal Co., Japan, Ltd, the bath does not use the FC-134, under the optimum conditions of 95 ℃ bath、the PTFE content of 7.5 cc/L、plating 20 min, the contact angle can be 147.70°, thickness of the coating film is 5.5 μm、the average hardness of 160.80 HV. The current research get the super hydrophobic Ni-P-PTFE composite layer and is preparing the plating in the microstructure of
    Ni-Co mold surface, contact angle 141.42° is get and test of hot embossing after lamination and stripping experiments, contact angle 137.89° is get. Therefore, the institute of Ni-P-PTFE composite layer anti-adhesion ability can help the Ni-Co mold from the type of effect.

    摘 要Ⅰ 總目錄 Ⅵ 表目錄 Ⅸ 圖目錄 Ⅹ 第一章 緒論 1 1.1 前言 1 1.2 微機電技術發展之簡介 2 1.2.1 矽基微加工技術 3 1.2.2 非矽基微加工 3 1.2.3 MEMS應用技術 6 1.3 研究動機與目的 7 1.4 論文架構 8 第二章 文獻回顧 11 2.1 鎳磷合金特性 11 2.2 鎳鈷合金特性 12 2.3 聚四氟乙烯(PTFE)簡介 13 2.3.1 聚四氟乙烯特性 14 2.4 化學鍍 16 2.4.1 化學鍍特性 16 2.4.2 化學鍍與電鍍之比較 16 2.4.3 化學鍍鎳液之成分與分類 18 2.4.4 化學鍍反應機制 20 2.5 複合鍍層共同析鍍沉積原理 21 2.6 Ni-P-PTFE複合鍍層之性質 24 2.7 抗沾黏特性 25 2.7.1 接觸角 26 2.7.2 遲滯效應 27 2.7.3 蓮花效應 28 2.8 超疏水膜簡介 28 2.8.1 超疏水膜製備之常用方法及特徵 29 2.8.2 超疏水鍍膜技術的未來發展 30 第三章 實驗設計與規劃 32 3.1 實驗設計 32 3.1.1 化學鍍液組成與操作條件 32 3.1.2 化學鍍鎳操作之影響因素 37 3.1.3 Ni-P-PTFE複合鍍層操作因素之影響 39 3.1.4 試片前處理 40 3.2 實驗儀器與設備 42 3.2.1 鍍層特性分析 52 3.3 實驗規劃 53 第四章 實驗結果與討論 56 4.1 鍍液pH值的影響 56 4.2 操作溫度對接觸角之影響 58 4.3 PTFE濃度對接觸角與鍍率之影響 61 4.4 定溫定時下PTFE濃度對接觸角之影響 65 4.5 界面活性劑對Ni-P-PTFE鍍層之影響 68 4.5.1 FC-134對Du Pont PTFE懸浮液之影響 69 4.5.2 FC-134對兩種PTFE懸浮液之影響 73 4.6 鍍層特性分析 76 4.6.1 SEM表面形貌觀測 76 4.6.2 Ni-P-PTFE鍍層硬度測試 89 4.7 Ni-Co模仁表面的Ni-P-PTFE處理 94 第五章 結論與未來展望 98 5.1 結論 98 5.2 未來展望 100 參考文獻 101

    1. 陳佳惠,"斥水性奈微結構表面之液珠驅動與操控",清華大學動力機械工程學系碩士論文,(2004)
    2. 楊啟榮等人,"微機電系統技術與應用",精密儀器發展中心,第四章,pp.142,(2003)
    3. The technical report of Institut für Mikrotechnik Mainz (IMM),Mainz, Germany.
    4. A. Maner, S. Harsh, and W. Ehrfeld, "Mass production of microdevices with extreme aspect ratio by electroforming", Plating and Surface Finishing, Vol. 75,No. 3, pp. 60-65,(1988)
    5. 楊啟榮,"微系統LIGA製程技術",科儀新知,Vol. 19,No. 4,pp. 4-17,(1998)
    6. W. Ehrfeld, W. Glashauser, D. Münchmeyer, and W. Schelb, "Mask making for synchrotron radiation lithography", Microelectronic Engineering, Vol. 5, pp. 463-470, (1986)
    7. 楊啟榮, "微系統類LIGA製程光刻技術", 科儀新知, Vol. 22, No. 4, pp. 33-45, (2001)
    8. 楊啟榮, "微系統LIGA製程之精密電鑄技術", 科儀新知, Vol. 21, No. 6, pp. 15-27, (2000)
    9. H. Miyajima and M. Mehregany, "High-aspect-ratio photolithography for MEMS applications", Journal of Microelectromechanical Systems, Vol. 4, No. 4, pp. 220-229, (1995)
    10. C. R. Yang, C. S. Chou, H. Y. Chou, H. S. Lin, W. K. Kuo, G. S. Luo, and J. W. Chang, "PMMA microstructure as KrF excimer-laser LIGA material", Proc. of SPIE, Vol. 3511, pp. 342-348, (1998)
    11. C. R. Yang, Frank H. H. Lin, H. Y. Chou, C. H. Lee, Bruce C. S. Chou, W. K. Kuo, Roger K. S. Luo, J. W. Chang, C. J. Chen, and W. H. Huang, "Fabrication techniques of novel microstructures using excimer laser ablation", Proc. of the 15th CSME Conference, Tainan, Taiwan, pp. 7-14, (1998)
    12. N. Rajan, M. Mehreqany, C. A. Zorman, S. Stefanescu, and T. P. Kicher, "Fabrication and testing of micromachined silicon carbide and nickel fuel atomizers for gas turbine engines", Journal of Microelectromechanical Systems, Vol. 8, No. 3, pp. 251-257, (1999)
    13. F. Läermer and A. Schilp, German Patent No. DE4241045.
    14. A. S. Holmes, "Microsystems Technology-LIGA and Related Processes", Short course text at Imperial College UK, (1997)
    15. 楊啟榮, "微機電系統原理與應用", 國立臺灣師範大學上課講義, (2010)
    16. 黃文杰, 李弘彬, 李春穎, "鎳/鎳磷合金複合電鍍層之製程與機械特性研究", 科學與工程技術期刊, Vol. 8, No. 1, pp. 45-50, (2012)
    17. http://www.nicoform.com
    18. R. F. Ledford, "Cobalt-nickel deposition in electrotyping" Plating, Vol. 36, pp.560-565, (1949).
    19. S. V. Gangal, "Perflurorinated polymers: Polytetrafluoroethylene", Encyclopedia of Polymer Science and Technology, (2001)
    20. http://www.omega-hc.com/PLATING/plating.htm
    21. E.R. Braithwaite, "Solid lubricants and surfaces", Pegamom Press, Vol. 179, (1964)
    22. F. J. lauss, "Solid lubricants and self-lubricating solids", Academic Press, Vol.195, (1972)
    23. 陳冠榮, "化工百科全書", 化學工業出版社, Vol. 9, pp. 228-230, (1995)
    24. P. J. Rae and D. M. Dattelbaum, "The properties of poly(tetrafluoroethylene) (PTFE) in compression", Polymer, Vol. 45, pp. 7615-7625 (2004)
    25. C. A. Sperati, "Fluorocarbpn polymers, polytetrafluoroethylene PTFE", pp. 117-129.
    26. 林鵬舉, "鎳與聚四氟乙烯複合鍍層特性之研究", 國防大學中正理工學院應用化學研究所碩士論文, (1998)
    27. 張允誠, 胡如南, 向榮, "電鍍手冊", 第2版, 國防工業出版社, 北京, 1997年7月
    28. http://www.anhuifenjin.com
    29. V.K. Gouda, S. Shawki, and H. El-Tawil, "Metal Finishing", 70, (5), 77 (1972)
    30. J.E.A.M.Van der Meerakker, J. Appl. Electrochem., Vol.11, pp.395, (1981)
    31. 葛明德, "無電鍍Ni-P/PTFE複合鍍層之研究", 台灣科技大學化學工程系博士論文,(2002)
    32. 陳彥政, "鎳基陶瓷微粒複合電鑄之研究", 國防大學中正理工學院國防科學研究所博士論文,(2004)
    33. N. Gulielmi, "Kinetic of the deposition of inert particles from electrolytic baths", Journal of the Electrochemical Society, Vol.119, No. 8, pp.1009-1012, (1972)

    34. J. P. Celis, J. R. Roos, and C. Buelens,"A mathematical model for the electrolytic codeposition of particles with metallic matrix", Journal of the Electrochemical Society, Vol.134, No. 6, pp.1402-1408, (1987)
    35. B. J. Hwang and C. S. Hwang, "Mechanism of codeposition of silicon carbide with electrolytic cobalt",Journal of the Electrochemical Society, Vol.140, pp.979-984, (1993)
    36. P. R. Ebdon, "The performance of electroless nickel/PTFE composites", Plating and Surface Finishing, Vol. 75, No. 9, pp.65-68, (1988)
    37. Y. Z. Zhung ,Y. Y. Wu, K. N. Sun, and M. Yao, "Characterization of electroless Ni-P-PTFE composite deposits", Journal of Materials Science Letters, Vol. 17, No. 2, pp.119-122, (1998)
    38. L. G. Yu, X. S. Zhang, The friction and wear properties of electroless Ni-polytetrafluoroethylene composite coating", Thin Solid Films, Vol. 245, No. 1-2, pp.98-103, (1994)
    39. 白曉軍, "Ni-PTFE及Ni-(CF)n複合鍍層的研究與應用", 電鍍與環保, Vol. 13, No. 4, pp.8-10,(1993)
    40. 徐世昌, "蓮花的自潔功能與奈米科技的應用", 科學發展,Vol. 354, pp. 60-63, (2002)
    41. 張芳誠, "奈米技術於表面改質之應用", 工研院環安中心,(2003)
    42. 曾建榮, "微觀自然界蓮花生態-創造防水撥油抗髒污的奈米紡織品", 技術尖兵雜誌, Vol.127, pp. 20-21, (2005).
    43. 莊允中, "奈米表面技術發展趨勢", 金屬工業研究發展中心, 初版, (2003)
    44. 郭志光, 劉維民, "仿生超疏水性表面的研究進展", 化學進展, Vol. 18, No. 6, 2006年6月
    45. 行政院國家科學委員會, "二氧化鈦光觸媒的應用-自潔建築材料", 科普新知, 2005年11月7日
    46. 姚國山, 汪大永, 林曉呈, "利用溶膠凝膠法制備光觸媒二氧化鈦薄膜與其抑菌效果之評估", 明道學術論壇, Vol. 2, No. 1, pp. 65-72, (2006)
    47. "奈米新觀念", 科學新知(25), 靜宜大學應用化學系暨研究所網站http://www.chem.pu.edu.tw/science.asp?gnum=&sk=25
    48. 何正山, 胡信國,"無电解複合鍍镍-磷-聚四氟乙烯工藝", 材料保護, Vol.28, No. 1, pp.16-19,(1995)
    49. M. Nishira and O. Takano, "Friction and wear characteristics of electroless Ni-P- PTFE composite coatings", Journal of the Surface Finishing Society of Japan, Vol.42, pp.839,(1991)
    50. H. Matsuda, Y. Kiyono, M. Nishira, and O. Takano, "Effect of cationic surfactant on deposition behavior in electroless Ni-P-PTFE composite plating", Transactions of the Institute of Metal Finishing, Vol. 72, No. 2, pp. 55, (1994)
    51. X. R. Lei and Y.J. Li, Journal of Materials Engineering, Vol.11, p12, (1997)

    下載圖示
    QR CODE