簡易檢索 / 詳目顯示

研究生: 林柏安
論文名稱: 自動化細胞分析儀開發與尿沉渣鏡檢研究
Development of automatic cells analysis instrument and research of microscopic examination of urinary sediments
指導教授: 陳順同
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 106
中文關鍵詞: 自動化細胞鏡檢自動化細胞分析儀尿沉渣
論文種類: 學術論文
相關次數: 點閱:469下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在針對尿沉渣細胞檢測,開發一部「自動化細胞分析儀」雛型,目的在發展具技術自主、快速且高精確的自動化細胞鏡檢分析儀設備。研究之初,先自行設計並製造一部以PC base控制,且具圖像擷取與辨識功能的自動化三軸微位移載台,載台上建構包括暗房、光源系統及逆向快速連拍機構等。實驗進行係使尿沉渣細胞檢體置於定量載玻片上,利用細胞受重力而下沉的特性,以鏡頭「自下而上」擷取圖像。經由正、逆向拍攝比對實驗,證實自下而上的圖像擷取,可快速獲得清晰的細胞輪廓,取像沒有對焦與焦距模糊的問題。為獲致正確且快速之醫檢報告,本研究提出一種「快速連拍累積檢體容積」的方法,亦即連拍110張的圖像面積(Area),累計成定量檢體容積(Volume),再累加各張圖像辨識之後的各種細胞與其含量,即可獲得單位容積的各種細胞數。此「快速連拍累積檢體容積」的技術開發,能使自行發展的自動化細胞分析儀對紅血球、白血球、草酸鈣結晶體與扁上皮細胞的判斷,達72%的正確辨識率,拍攝與辨識速度達90 Specimens/hrs,能正確且快速提供醫檢報告,證實本研究所開發的「自動化細胞分析儀」雛型,已能成功應用於尿沉渣細胞的鏡檢。

    目 錄 摘 要 I ABSTRACT II 目 錄 III 圖目錄………………………………………………………………….……..VIII 表目錄…………………………………………………………………..…..… XII 符號表……………………………………………………… .……………….XIV 第一章 緒論 1 1-1前言 1 1-2 研究動機 2 1-3研究目的 3 1-4 研究方法 4 1-5文獻回顧 5 1-5-1細胞辨識文獻回顧 5 1-5-2圖像處理文獻回顧 13 1-5-3細胞分析儀文獻回顧 16 1-6論文架構 17 第二章 實驗原理應用 19 2-1光學顯微鏡原理 19 2-1-1顯微鏡光學 20 2-1-2顯微鏡的放大原理 21 2-1-3明視野顯微鏡的構造 23 2-2視覺檢測系統原理 24 2-2-1機器視覺原理 25 2-2-2光源 26 2-2-3打光技術 28 2-2-4鏡頭選用(適用生醫) 32 2-2-5攝影機(適用生醫) 33 2-3圖像辨識原理 34 2-3-1數位圖像處理 35 2-3-2鏡頭視野與空間校正 37 2-3-3特徵圖像面積匹配原理 38 2-4尿沉渣檢測原理 40 2-4-1常規尿液分析 41 2-4-2尿沉渣顯微鏡檢 41 2-4-3尿液分析之標準化 42 2-4-4尿液分析之自動化 44 2-5尿沉渣細胞自動鏡檢之演算法 45 2-5-1紅血球 45 2-5-2白血球 46 2-5-3扁上皮細胞 50 2-5-4草酸鈣結晶體 53 第三章 實驗設備建構 57 3-1自動化尿沉渣細胞分析儀設計 57 3-1-1高精度鏡檢載台設計與製造 58 3-1-2逆向式圖像擷取機構設計 59 3-1-3照明系統設計 60 3-1-4光源保護電路設計 61 3-1-5圖像感測器與物鏡之選用 62 3-1-6數位類比轉換裝置 62 3-2人機介面設計 63 3-2-1驅動監控系統介面設計 63 3-2-2自動圖像辨識介面 64 3-3加工與檢測設備之使用 65 3-3-1 CNC綜合切削中心機 65 3-3-2 CNC精密線切割放電加工機 66 3-3-3工具顯微鏡 66 第四章 實驗方法 67 4-1實驗之前置作業 67 4-1-1高精度鏡檢載台與載玻片壓板校正 67 4-1-2細胞圖像之對焦 68 4-1-3細胞圖像擷取方向之影響 69 4-1-4細胞圖像擷取之光源影響 70 4-2尿沉渣細胞圖像擷取之相關參數實驗 71 4-2-1最適光源照射角度 71 4-2-2圖像銳度 75 4-2-3圖像亮度與對比度 78 4-2-4圖像飽和度 83 4-2-5結果與討論 85 4-3尿沉渣圖像自動擷取與自動辨識 86 4-3-1圖像自動連續擷取 86 4-3-2尿沉渣細胞圖像自動化辨識 87 4-3-3結果與討論 88 4-4尿沉渣圖像的相關驗證實驗 92 4-4-1尿沉渣細胞圖像之區域分佈 92 4-4-2 LED光源溫度的影響 94 4-4-3結果與討論 94 第五章 結論 97 5-1研究成果與貢獻 97 5-2未來展望 99 參考文獻 99 附錄……………………………………………………………………………105 A. 已發表期刊論文 105 B. 個人簡歷 106

    [1] 工研院IEK產業情報網,Espicom,2009, http://ieknet.iek.org.tw/
    [2] Global Source電子工程,醫療電子器材,http://www.eettaiwan.com/
    [3] 朱蘇煜,臨床鏡檢學圖鑑,捷立多媒體事業有限公司,2007,第9-10頁
    [4] 曾永德,臨床鏡檢學,藝軒圖書出板社,2007,第1-104頁
    [5] 美國 IRIS公司,細胞分析儀,http://www.irisdiagnostics.com
    [6] 日本TOA Medical公司,細胞分析儀,http://www.sysmex-ap.com
    [7] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, “Observation of single-beam gradient force optical trap for dielectric particles”, Sensors and Actuators, Vol. A 111, 2004, pp.100–106
    [8] A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms and molecules”, IEEE, Journal of Selected Topics in Quantum Electronics, Vol. 6, 2000, pp.841–856
    [9] 林哲信,簡育生, 電驅動式微混合器及整合光鉗之細胞操控平台於生醫檢設之應用,國立中山大學機械與機電工程驗究所,碩士論文, 2005,第31-40頁
    [10] R. A. Flynn, A. L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. M. Wang, S. C. Esener, “Parallel transport of biological cells using individually addressable VCSEL arrays as optical tweezers”, Sensors and Actuators, Vol.87, 2002, pp. 239–243
    [11] D. Satake, H. Ebi, “A sensor for blood cell counter using MEMS technology”, Sensors and Actuators, Vol. B 83, 2002, pp.77–81
    [12] U. D. Larsen, “Microchip coulter particle counter”, Proceedings of transducers, Vol. A 13, 1997, pp. 16–19
    [13] S. U. Son, Y. H. Choi, S. S. Lee, “Micro-cell counter using photoconductance of boron diffused resistor (BDR)”, Sensors and Actuators, Vol. A 111, 2004, pp.100–106
    [14] H. E. Ayliffe, A. B. Frazier, R. D. Rabbitt, “Electric impendance spectroscopy using microchannels with integrated metal electrodes”, MEMS 8, 1999, pp.50–57
    [15] G. B. Lee, C. H. Lin, S. C. Chang, “Micromachine-based multi-channel flow cytometers for cell/particle counting and sorting” , IOP Science, Vol. A 15, 2004, pp.447
    [16] E. Ferrari, V. Emiliani, D. Cojoc, V. Garbin, “Biological samples micro-manipulation by means of optical tweezers”, Science Direct, Microelectronic Engineering, Vol.78, 2005, pp. 575–581
    [17] C. Yi, C. W. Li, S. Ji, M. Yang, “Microfluidics technology for manipulation and analysis of biological cells”, Analytica chimica acta, Vol.560, 2006, pp. 1–23
    [18] B. Bird, M. J. Romeo, M. Diem, K. Bedrossian, N. Laver, S. Naber, “Cytology by infrared micro-spectroscopy: Automatic distinction of cell types in urinary cytology”, Vibrational Spectroscopy, Vol. 48, 2008, pp. 101–106
    [19] C. L. Ren, T. Glawdel, “Electro-osmotic flow control for living cell analysis in microfluidic PDMS chips”, Mechanics Research Communications, Vol.36, 2009, pp. 75–91
    [20] C. H. Chen, J. G. Santiago, “A planar electroosmotic micropump”, Microelectromech, Vol. 11, 2002, pp. 672–683
    [21] W. Jin, F. Xia, X. Yin, Z. Fang, “Single-cell analysis by electrochemical detection with a microfluidic device”, Journal of Chromatography, Vol .A 1063, 2005, pp. 227–233
    [22] C. J. Ingham, A. Sprenkels, J. Bomer, D. Molenaar, A. V. D. Berg, J. E. T. V. H. Vlieg, W. M. Vos, “The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms”, PNAS, Vol.104, No.46 2007, pp.18217–18222
    [23] A. G. Anwer, P. M. Sandeep, E. M. Goldys, S. Vemulpad, “Distinctive auto fluorescence of urine samples from individuals with bacteriuria compared with normals”, Clinica Chimica Acta, Vol.401, 2009, pp. 73–75
    [24] M. A. B. Andrade, F. Buiochi, J. C. Adamowski, “Particle manipulation by ultrasonic progressive waves”, Physics Procedia, Vol.3, 2010, pp.283–288
    [25] T. Kozuka, T. Tuziuti, “Acoustic manipulation of micro objects using an ultrasonic standing wave”, International Symposium on Micro
    Machine and Human Science, 1994, pp.83-87,
    [26] Y. M. Li, X. P. Zeng, “A new strategy for urinary sediment segmentation based on wavelet, morphology and combination method”, computer methods and programs in biomedicine, Vol.84, 2006, pp.162-173
    [27] M. L. SHEN, “Multi-Urine Sediment Component Recognition Method”, International Workshop on Information Security and Application, 2009, pp. 21–22
    [28] Y. Liang, B. Fang, J. Qian, L. Chen, C. Li, Y. Liu, “False positive reduction in urinary particle recognition”, Expert Systems with Applications, Vol. 36, 2009, pp. 11429–11438
    [29] 義大利 Menarini 公司,細胞分析儀,http://www.menarinidiagnostics.com
    [30] 匈牙利ELEKTRONIKA公司,細胞分析儀,http://www.e77.hu/en
    [31] 國祥貿易,光學顯微鏡,http://www.lin.com.tw
    [32] 林明泉,臨床鏡檢學,榮昇圖書公司,2002,第1-34頁
    [33] D. Halliday, R. Resnick, J. Walker, “Fundamentals of physics 7”, John wiley&sons Inc, 2006, pp. 34-20~34-22
    [34] 國立臺灣師範大學物理教學示範實驗室,http://www.phy.ntnu.edu.tw
    [35] 維基百科,偏光鏡,http://zh.wikipedia.org/wiki/。
    [36] K. Kadkhoda, K. Manickam, P. DeGagne, P. Sokolowski, P. Pang, N. Kontzie, M. Alfa, “UF-1000i™ flow cytometry is an effective screening method for urine specimens”, Diagnostic Microbiology and Infectious Disease, Vol. 69, 2011, pp. 130– 136
    [37] Z. Zaman, G. B. Fogazzi, G. Garigali, M. D. Croci, G. Bayer, T. Kranicz, “Urine sediment analytical and diagnostic performance of sediMAX-A new automated microscopy image-based urine sediment analyser”, Clinica Chimica Acta, Vol. 411, 2010, pp. 147– 154
    [38] 碁仕科技,視覺系統,全亞文化事業股份有限公司,機電整合期刊第84期,2005,第1-10頁
    [39] 王瑞陽,機器視覺系統的光源與照明,機械工業雜誌,第66期,民國77年9月,第185-200頁
    [40] 廖志偉,自動化光學檢測與實務,台灣科技大學機械工程系光機電整合實驗室,2011,CH 3
    [41] N. Zuech, Applying Machine Vision ,Wiley New York, pp.45-66, 1988
    [42] 力丞儀器科技有限公司,http://www.apisc.com/LED_ifv.htm
    [43] M. Bigas, E. Cabruja, J. Forest, J. Salvi, “Review of CMOS image sensors”, Microelectronics Journal, Vol.37, 2006, pp. 433-451
    [44] J. P. Lewis, “Fast normalized cross-correlation”, Vision Interface, 1995, pp.120-123
    [45] B. H. Friemel, L. N. Bohs, G. E. Trahey, “Relative performance of two-dimensional speckle-tracking techniques: normalized correlation, non-normalized correlation and sum-absolute-difference”, Proc.of IEEE Ultrasonics Symposium, Vol. 2, 1995, pp1481-1484
    [46] K. Briechle, U. D. Hanebeck, ”Self-localization of a mobile robot using normalized cross correlation”, Proc. of IEEE International SMC Conference, Vol. 4, 1999, pp. 720-725
    [47] 陳良健,陳衍豪,立體航測圖像直線與圓弧輪廓建物半自動之三維模型重建,國立中央大學土木工程所,碩士論文, 2001,第36-41頁
    [48] 詹錢登,陳軍豪,利用Hough轉換追蹤顆粒流體中顆粒運動之軌跡,國立成功大學水利及海洋工程所,碩士論文, 2007,第12-16頁
    [49] E. Kreyszing, “Advanced engineering mathmatics 9”, John wiley&sons Inc, 2007, pp. 371-376
    [50] 實用醫療器材有限公司,定量專用離心管,中華民國專利號碼 # 127387
    [51] 醫學小百科,血液,tbmta.pixnet.net
    [52] 肯定資訊,影像擷取卡產品,http://www.surevision.com.tw/
    [53] 台中精機,CNC產品,http://www.or.com.tw/
    [54] 慶鴻機電,線切割機台,http://chmer.web66.com.tw/
    [55] 漢磊科技,工具顯微鏡,http://www.episil.com/index.aspx
    [56] 羅文期,致茂於太陽光電檢測設備之推展經驗分享,2010綠色光電產業設備研討會,民國99年12月,第36-38頁
    [57] 泰菱有限公司,紅外線溫度計,http://www.tecpel.com.tw/mt-4.html

    下載圖示
    QR CODE