簡易檢索 / 詳目顯示

研究生: 江恒瑋
Chiang, Heng-Wei
論文名稱: 提升矽陽極鋰離子電池之循環穩定性之研究
Improving Cycle Stability of Silicon as Anodic Electrode for Lithium Ion Batteries
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 102
中文關鍵詞: 鋰離子電池矽陽極奈米石墨烯板限制電容量
英文關鍵詞: Li-ion battery, silicon anode, graphene nanoplatelets, limit-capacity
論文種類: 學術論文
相關次數: 點閱:147下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽是近年來鋰離子電池中備受矚目的陽極材料,因為矽有很高的比電容量(4200mAhg-1)等優點,但其最大的缺點是在鋰離子嵌入材料後,體積會膨脹造成電容量快速地衰減。本篇研究以簡單的方法製備矽陽極並利用調整不同的實驗條件,像是不同黏著劑和不同體積的溶劑去得到最佳化條件,使其組裝成鋰離子電池後,循環壽命增加、庫倫效率提高。
    本篇材料是以奈米矽(~100nm)作為活性物質、碳黑(Super P)為導電碳材,和Sodium carboxymethyl cellulose(Na-CMC)為黏著劑,並使用pH=3的緩衝溶液作為電極漿料混和之溶劑。另外,本研究利用奈米石墨烯板(Graphene Nanoplatelets,GnPs)取代原本的碳黑並在電解液中添加10 wt.%的Fluoroethylene carbonate(FEC)和2 wt.%的Vinylene carbonate(VC),以增加矽陽極的導電性及循環穩定性並減少不可逆電容量。最後,本研究以電流密度為1000mAg-1進行充放電程序,並將電容量限制在1500 mAhg-1可穩定維持175圈,甚至到200圈其電容量仍約有1200 mAhg-1。為了要評估循環的效率跟電化學性質,電池也以電流密度為200mAg-1進行測試。

    Silicon as anode for Lithium ion batteries (LIB) has attracted much attention due to its high capacity (4200 mAh g-1). However, the worst disadvantage is large volume expansion during lithiation resulting in fast fading of the capacity of silicon. In this study, silicon anodic electrodes in have been successfully prepared and the performance of the LIB also has been optimized via tuning different experimental parameters such as different binders and different volume of solvent. The fabrication of silicon anodic electrode slurry were based on using nano-silicon (100nm), carbon black (Super P), sodium carboxymethyl cellulose (Na-CMC) and a pH=3 buffer solution as active materials, conductive carbon, binder and solvent, respectively. In addition, we also utilized graphene nanoplatelets(GnPs) to replace carbon black and added 10wt. % Fluoroethylene carbonate(FEC) and 2wt. % Vinylene carbonate (VC) into liquid electrolyte for improving the conductivity and stability of silicon anodic electrode, thus reducing the irreversible capacity of cycles. Finally, the cycle stability of Si-LIB were improve to 175 cycles with a limited discharge capacity of 1500 mAhg-1 at a rate of 1000mAg-1 both in discharge and charge process, respectively. In order to evaluate the influence of the cycling rate on electrochemical properties, cells were also cycled by 200 mAg-1.

    摘要 I ABSTRACT II 目錄 IV 圖目錄 VIII 表目錄 XII 謝誌 XIII 第一章 緒論 1 1-1 前言 1 1-2 鋰離子電池發展簡史 5 1-3 鋰離子二次電池之工作原理介紹 7 1-4 鋰離子二次電池之組成介紹 9 1-4-1 正極(陰極) 9 1-4-2 負極(陽極) 12 1-4-3 電解液 13 1-4-4 電解液對固態電解質(SEI)介面的影響 16 1-4-5 隔離膜 18 第二章 文獻回顧與研究動機 20 2-1 鋰金屬 21 2-2 碳材 22 2-2-1 一維碳材 22 2-2-2 二維碳材 23 2-2-3 孔洞結構碳材 26 2-3 金屬氮化物 28 2-4 金屬氧化物 30 2-5 鋰合金 33 2-6 矽化物 35 2-6-1 矽奈米結構 39 2-6-2 矽複合材料 41 2-6-3 其他製備電極之因素 46 2-6-4 研究動機 54 第三章 實驗 55 3-1 儀器設備 55 3-2 實驗藥品 56 3-3 材料鑑定與分析 57 3-3-1 XRD (X-ray Diffraction)粉末繞射分析 57 3-3-2 FE-SEM (Field Emission Scanning Electron Microscopy)之表面型態分析 57 3-3-3 TEM (Transmission Electron Microscopy)成像分析 58 3-3-4 FTIR 紅外光光譜(Infrared spectroscopy)分析 58 3-4 負極極片製備 59 3-4-1 磁石攪拌法 59 3-4-2 球磨機混合法 62 3-5 鈕扣型電池組裝 62 3-6 鈕扣型電池充放電之測試 64 3-6-1 一般充放電測試 64 3-6-2 限制電容量測試 64 3-7 交流阻抗(AC IMPEDANCE)分析 65 3-8 循環伏安法(CYCLIC VOLTAMMETRY)之分析 65 第四章 結果與討論 67 4-1 矽之基本性質 67 4-2 不同黏著劑之分析 68 4-3 不同導電碳材之分析 71 4-4 不同電解液之分析 75 4-5 不同體積的緩衝溶液之分析 81 4-6 綜合討論 85 第五章 結論 89 參考文獻 90 附錄A 102

    1. Palacin, M.-R. Chem. Soc. Rev., 2009, 38, 2565-2575.
    2. Tarascon, J.-M.; Armand, M. Nature, 2001, 414, 359-367.
    3. Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Advanced Materials, 2011, 23, 1695-1715.
    4. 陳金銘, 工業材料雜誌, 2012, 302, 1-3.
    5. Ikeda, H.; Saito, T.; Tamura, H. Proc. Manganese Dioxide Symp., 1975, 1, (eds Kozawa, A. & Brodd, R. H.).
    6. Armand, M. B. Fast Ion Transport in Solids, 1973, 665-673.
    7. Whittingham, M. S. Science, 1976, 192, 1226.
    8. Yamaki, J. I.; Tobishima, S. I.; Hayashi, K.; Saito, K.; Nemoto, Y.; Arakawa, M. Journal of Power Sources, 1998, 74, 219-227.
    9. Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. Mat. Res. Bull., 1983, 18, 461-472.
    10. Murphy, D. W.; DiSalvo, F. J.; Carides, J. N.; Waszczak, J. V. Mat. Res. Bull., 1978, 13, 1395-1402.
    11. Lazzari, M.; Scrosati, B. J. Electrochem. Soc., 1980, 127, 773-774.
    12. Nagaura, T.; Tozawa, K. Prog. Batteries Solar Cells, 1990, 9, 209.
    13. Scrosati, B.; Garche, J.; Journal of Power Source, 2010, 195, 2419-2430.
    14. Fernanda, F. C. Bazito; Roberto, M. Torresi; J. Braz. Chem. Soc., 2006, 17, 627-642.
    15. Thackeray, M. Nature Materials, 2002, 1, 81-82.
    16. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. MRS Bull., 1980, 15, 783.
    17. Striebel, K. A.; Deng, C. Z.; Wen, S. J.; Cairns, E. J. J. Electrochem. Soc. 1996, 143, 1821.
    18. Fey, G. T.-K.; Muralidharan, P.; Lu, C. T.; Cho, Y. D. Electrochimica Acta, 2006, 51, 4850-4858.
    19. Amatucci, G. G.; Pereira, N.; Zheng, T.; Tarascon, J.-M. J. Electrochem. Soc. 2001, 148, A171.
    20. Cho, J.; Kim, G. B.; Lim, H. S.; Kim C.-S.; Yoo. S.-I. Electrochemical and Sloid-State Letters., 1999, 2, 607-609.
    21. Takahashi, M.; Tobishima, S.-I.; Takei, K.; Sakurai, Y. Solid State Ionics, 2002, 148, 283.
    22. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc., 1997, 144, 1188.
    23. Hu, Y.; Doeff, M. M.; Kostecki, R.; Finones, R.; J. Electrochem. Soc., 2004, 151, A1279.
    24. Prosini, P. P.; Zane, D.; Pasquali, M.; Electrochim. Acta, 2001, 46, 3517.
    25. Dahn, J. R.; Zheng, T.; Liu, Y. H.; Xue, J. S. Science, 1995, 270, 590.
    26. Sato, K.; Noguchi, M.; Demachi, A.; Oki, N.; Endo, M. Science, 1994, 264, 556.
    27. Yoshino, A., These ten years and feature of rechargeable battery materials. 2003, 110.
    28. 産業技術総合開発機構, リチウム二次電池構成材料開発の状態と課題. 2007.
    29. 林素琴, 鋰電池材料發展分析. 工研院電子報, 2009.
    30. 詹勗忠, 國立台南大學綠色能源科技研究所碩士論文, 2009, 11-13.
    31. Xu, K. Chem. Rev., 2004, 104, 4303-4417.
    32. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Energy Environ. Sci., 2011, 4, 3243–3262.
    33. Vetter, J.; Novak, P.; Wagner, M. R.; Veit C.; Möller, K. –C.; Besenhard, J. O.; Winter, M.; Wohlfahert-Mehrens, M.; Vogler, C. J. Power Sources, 2005, 147, 269.
    34. 張國馨; Belov, D.; 謝登存, 工業材料雜誌, 2008, 260, 81-88.
    35. 曾翰平, 國立台灣科技大學碩士論文, 2012, 19-20.
    36. Takehara, Z. I., Journal of Power Sources, 1997. 68, 82-86.
    37. Nishiyama, K.,; Tahara, S. I.; Uchida, Y.; Tanoue,S.; Taniguchi, I. Journal of Electroanalytical Chemistry, 1999. 478(1-2), 83-91.
    38. Iijima, S. Nature, 1991, 354, 56.
    39. Dillon, A. C. Chem. Rev., 2010, 110, 6856.
    40. Mi, C. H.; Cao, G. S.; Zhao, X. B. J. Electroanal. Chem., 2004, 562, 217.
    41. Eom, J.; Kim, D.; Kwon, H. S. J. Power Sources, 2006, 157, 507.
    42. Deng, D.; Lee, J. Y. Chem. Mater., 2007, 19, 4198.
    43. Ji, L. W.; Lin, Z.; Zhou, R.; Shi, Q.; Toprakci, O.; Medford, A. J.; Millns, C. R.; Zhang, X. W. Electrochim. Acta, 2010, 55, 1605.
    44. Ji, L.; Zhang, X. W. Nanotechnology, 2009, 20, 155705.
    45. Murugan, A. V.; Muraliganth, T.; Manthiram, A. J. Phys. Chem. C, 2008, 112, 14665.
    46. Chen, D; Tang, L. H.; Li, J. H. Chem. Soc. Rev., 2010, 39, 3157.
    47. Wang, G. X.; Shen, X. P.; Yao, J.; Park, J. Carbon, 2009, 47, 2049.
    48. Guo, P.; Song, H. H.; Chen, X. H. Electrochem. Commun., 2009, 11, 1320.
    49. Wang, G. X.; Wang, B.; Wang, X. L.; Park, J.; Dou, S. X.; Ahn, H.; Kim, K. J. Mater. Chem., 2009, 19, 8378.
    50. Chen, S. Q.; Chen, P.; Wu, M. H.; Pan, D. Y.; Wang, Y. Electrochem. Commun., 2010, 12, 1302.
    51. Chou, S. L.; Wang, J. Z.; Choucair, M.; Liu, H. K.; Stride, J. A.; Dou, S. X. Electrochem. Commun., 2010, 12, 303.
    52. Yang, S. B.; Cui, G. L.; Pang, S. P.; Cao, Q.; Kolb, U.; Feng, X. L.; Maier, J.; Mullen, K. ChemSusChem, 2010, 3, 236.
    53. Wang, D. H.; Choi, D. W.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou, R.; Hu, D. H.; Wang, C. M.; Saraf, L. V.; Zhang, Z. G.; Aksay, I. A.; Liu, J. ACS Nano, 2009, 3, 907.
    54. Zhang, M.; Lei, D. N.; Yin, X. M.; Chen, L. B.; Li, Q. H.; Wang, T. G.; Wang, T. H. J. Mater. Chem., 2010, 20, 5538.
    55. Yao, J.; Shen, X. P.; Wang, B.; Liu, H. K.; Wang, G. X. Electrochem. Commun., 2009, 11, 1849.
    56. Paek, S. M.; Yoo, E.; Honma, I. Nano Lett., 2009, 9, 72.
    57. Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Energy Environ. Sci., 2011, 4, 2682-2699.
    58. Woo, S. W.; K. Dokko, K.; Nakano, H.; Kanamura, K. Electrochemistry, 2007, 75, 635.
    59. Cheng, F.; Tao, Z.; Liang, J. J. Chen, Chem. Mater., 2008, 20, 667.
    60. Zhou, H. S.; Zhu, S. M.; Hibino, M.; Honma, I.; Ichihara, M. Adv. Mater., 2003, 15, 2107.
    61. Su, F. B.; Zhao, X. S.; Wang, Y.; Zeng, J. H.; Zhou, Z. C.; Lee, J. Y. J. Phys. Chem. B, 2005, 109, 20200.
    62. Lee, K. T.; Lytle, J. C.; Ergang, N. S.; Oh, S. M.; Stein, A. Adv. Funct. Mater., 2005, 15, 547.
    63. Shodai, T.; Okada, S.; Tobishima, S.; Yamaki, J. Solid State Ionics, 1996, 86–88, 785.
    64. Rowsell, J. L. C.; Pralong, V.; Nazar, L. F.; J. Am. Chem. Soc., 2001, 123, 8598.
    65. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nature, 2000, 407, 496.
    66. Delmer, O.; Balaya, P.; Kienle, L.; Maier, J.; Adv. Mater., 2008, 20, 501.
    67. Badway, F.; Mansour, A. N.; Pereira, N.; Al-Sharab, J. F.; Cosandey, F,; Plitz, I.; Amatucci, G. G. Chem. Mater., 2007, 19, 4129.
    68. Larcher, D.; Beattie, S.; Morcrette, M.; Edström, K.; Jumas, J. C.; Tarascon, J. M. Journal of Materials Chemistry, 2007, 17, 3759-3772.
    69. Wachtler, M.; Besenhard, J. O.; Winter, M. Journal of Power Sources, 2001, 94, 189-193.
    70. Huggins, R. A.; J. Power Sources, 1999, 81, 13-19.
    71. Szczech, J. R.; Jin, S. Energy Environ. Sci., 2011, 4, 56-72.
    72. McDowell, M. T.; Lee, S. W.; Wang, C.; Cui, Y. Nano Energy 1, 2012, 401-410.
    73. Chevrier, V. L.; Zwanziger, J. W.; Dahn, J. R.; J. Alloys Compd., 2010, 496, 25-36.
    74. Beaulieu, L.Y.; Eberman, K.W.; Turner, R. L.; Krause, L. J.; Dahn, J. R. Electrochem. Solid State Lett. 2001, 4, A137-A140.
    75. Wu, H.; Cui, Y. Nano Today, 2012, 7, 414-429.
    76. Li, H.; Huang, X.; Chen, L.; Wu, Z.; Liang, Y. Electrochemical and Solid-State Letters, 1999. 2, 547-549.
    77. Liu, W. R.; Guo, Z. Z.; Young, W. S.; Shieh, D. T.; Wu, H. C.; Yang, M. H.; Wu, N. L. Journal of Power Sources, 2005. 140, 139-144.
    78. Li, H.; Huang, X.; Chen, L.; Zhou, G.; Zhang, Z.; Yu, D.; Jun Mo, Y.; Pei, N. Solid State Ionics, 2000. 135, 181-191.
    79. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. Nat. Nanotechnol. 2008, 3, 31-35.
    80. Yang, X.; Wen, Z.; Zhu, X.; Huang, S. Electrochemical and Solid-State Letters, 2005, 8, A481-A483.
    81. Wang, G. X.; Ahn, J. H.; Yao, J.; Bewlay, S.; Liu, H. K. Electrochemistry Communications, 2004, 6, 689-692.
    82. Hu, Y. S.; Demir-Cakan, R.; Titirici, M. M.; Müller, J. O.; Schlögl, R.; Antonietti, M.; Maier, J. Angewandte Chemie International Edition, 2008, 47, 1645-1649.
    83. Liu, N.; Wu, H.; McDowell, M.-T.; Yao, Y.; Wang, C.; Cui Y. Nano Lett., 2012, 12, 3315-3321.
    84. Chou, S. L.; Wang, J. Z.; Choucair, M.; Liu, H. K.; Stride, J. A.; Dou, S. X. Electrochemistry Communications, 2010, 12, 303-306.
    85. Lee, J. K.; Smith, K. B.; Hayner, C. M.; Kung, H. H. Chemical Communications, 2010. 46, 2025-2027.
    86. Zhou, X.; Yin, Y.-X.; Wan, L.-J.; Guo, Y.-G. Advanced Energy Materials, 2012, 2, 1086-1090.
    87. Magasinski, A.; Dixon, R.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. Nat. Mater., 2010, 9, 353–358.
    88. Liu, W. R.; Yang, M. H.; Wu, H. C.; Chiao, S. M.; Wu, N. L. Electrochemical and Solid-State Letters, 2005, 8, A100-A103.
    89. Li, J.; Lewis, R. B.; Dahn, J. R. Electrochemical and Solid-State Letters, 2007, 10, A17-A20.
    90. Hochgatterer, N. S.; Schweiger, M. R.; Koller, S.; Raimann, P. R.; Wöhrle, T.; Wurm, C.; Winter, M. Electrochemical and Solid-State Letters, 2008, 11, A76-A80.
    91. Bridel, J.-S.; Axaïs, T.; Tarascon, J.-M.; Larcher, D. Chem. Mater., 2010, 22, 1229-1241.
    92. Mazouzi, D.; Lestriez, B.; Roué, L.; Guyomard, D. Electrochemical and Solid-State Letters, 2009, 12, A215-A218.
    93. Chan, C. K.; Patel, R. N.; O’Connell, M. J.; Korgel, B. A.; Cui, Y. ACS Nano, 2010, 4, 1443–1450.
    94. Gomez Camer, J. L.; Morales, J.; Sanchez, L.; Ruch, P.; Ng, S. H.; Koetz, R.; Novak, P. Electrochim. Acta, 2009, 54, 6713–6717.
    95. Lestriez, B.; Desaever, S.; Danet, J.; Moreau, P.; Plée, D.; Guyomard, D. Electrochemical and Solid-State Letters, 2009, 12, A76-A80.
    96. Ota, H.; Sakata, Y.; Inoue, A.; Yamaguchi, S. J. Electrochem. Soc., 2004, 151, A1659–A1669.
    97. Abraham, D. P.; Furczon, M. M.; Kang, S. H.; Dees, D. W.; Jansen, A. N. J. Power Sources, 2008, 180, 612–620.
    98. Chen, L.; Wang, K.; Xie, X.; Xie, J. J. Power Sources, 2007, 174, 538–543.
    99. Choi, N.-S.; Yew, K. H.; Lee, K. Y.; Sung, M.; Kim H.; Kim, S.-S. J. Power Sources, 2006, 161, 1254–1259.
    100. Mazouzi, D.; Delpuech, N.; Oumellal, Y.; Gauthier, M.; Cerbelaud, M. Gaubicher, J.; Dupré, N.; Moreau, P.; Guyomard, D.; Roué, L.; Lestriez, B. Journal of Power Sources, 2012, 220, 180-184.
    101. Oumellal, Y.; Delpuech, N.; Dupré, N.; Gaubicher, J.; Moreau, P.; Soudan, P.; Lesriez, B.; Guyomard, D. J. Mater. Chem., 2011, 21, 6201-6208.
    102. Krause, L. J.; Obrovac, M. N. Journal of The Electrochemical Society, 2007, 154, A103-A108.

    下載圖示
    QR CODE