研究生: |
陳馨寧 Ting, Xin-Ning |
---|---|
論文名稱: |
節奏規律性對音高知覺判斷的影響 The Influence of Temporal Regularity on Pitch Perception |
指導教授: |
許禕芳
Hsu, Yi-Fang |
口試委員: |
張仁和
Chang, Jen-Ho 郭郡羽 Kuo, Chun-Yu 許禕芳 Hsu, Yi-Fang |
口試日期: | 2022/12/30 |
學位類別: |
碩士 Master |
系所名稱: |
教育心理與輔導學系 Department of Educational Psychology and Counseling |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 注意力動態理論 、節奏規律性 、注意力 、音高知覺 |
英文關鍵詞: | Dynamic attending theory, temporal regularity, attention, pitch perception |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300312 |
論文種類: | 學術論文 |
相關次數: | 點閱:81 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
動態注意力理論指出,注意力並非固定不變,當外在環境的刺激具有規律性的時間節奏時,注意力會以動態振盪的方式與規律的刺激序列同步化,形成具有內部規律性的注意力節奏,而此同步化還可形成預期性注意,致使人們將注意力轉移到刺激出現的時間點上進而預期下一個刺激出現的時間。過去的實驗證實了節奏的規律性能夠影響人們對於聲音出現的時間點的判斷,當外在刺激為規律的時間節奏時,如果後續聲音出現的時間點符合節奏的預期,則我們判斷該聲音出現的時間點的反應正確率及反應時間都會較好,支持了動態注意力理論。本研究欲進一步了解若外在的規律刺激能夠導致注意力與之同步,節奏規律性對於人們在音高的判斷是否也會有一樣的促進效果。因此本研究複製了Jones等人(2002)的實驗一,但根據Bauer等人(2015)的實驗五進行修改。受試者聆聽包含標準音、內插音、與比較音的聲音序列,需要根據標準音來判斷比較音的音高是相同、較高、或較低。本研究從最後一個內插音與比較音之間的刺激出現時間差(包含可預期與不可預期的刺激出現時間差)及實驗段(包含四個實驗段)去分析受試者的反應正確率及反應時間,發現受試者對於比較音出現在可預期與不可預期的時間點的反應正確率與反應時間沒有任何的顯著差異,實驗結果與Jones等人的實驗結果不符,顯示節奏規律性無法促進人們的音高知覺判斷。然而,本研究發現受試者判斷比較音高的反應正確率與反應時間會隨著反覆的循環施測而逐漸進步,顯示無論外在刺激是否規律,反覆訓練都可以促進人們在音高判斷作業上的表現。
Dynamic attending theory proposes that attention is flexible. Attention can dynamically synchronize with the temporally regular stimulus sequence in the external environment. Such synchronization not only forms a stimulus-driven rhythm of attention but also creates anticipatory attention, entailing a temporal shift of attention that anticipates the onset time of a stimulus. Previous experiments have demonstrated that temporal regularity can improve participants’ judgment on when a sound appears. That is, participants’ response accuracy was higher and reaction time was lower when a sound appears at expected, relative to unexpected, time points. The purpose of this study was to further examine whether temporal regularity would have the same effect on participants’ judgment of pitch. We adapted the Experiment 1 of Jones et al. (2002) according to the Experiment 5 of Bauer et al. (2015). Participants listened to a sequence of auditory stimuli including a standard tone, several interpolated tones, and a comparison tone. Participants were required to judge whether the pitch of the comparison tone was equal to, higher than, or lower than the pitch of the standard tone. We analyzed participants’ response accuracy and reaction time by stimulus onset asynchrony (SOA) between the last interpolated tone and the comparison tone (including very early, early, expected, late, and very late) and experimental blocks (including four blocks). We found that participants’ response accuracy and reaction time did not differ between conditions when the comparison tone appeared at the expected and unexpected time points. The result suggested that temporal regularity cannot facilitate pitch perception, inconsistent with the reports of Jones et al. We only found that participants’ response accuracy and reaction time gradually improved with experimental blocks, suggesting that practice can improve participants’ judgment of pitch.
邱俊杰、黃希庭、于曉琳(2017):〈注意控制是否影響節律時間期待〉。《心理科學進展卷》,25,2145–2156。https://doi.org/10.3724/sp.j.1042.2017.02145
Barnes, R., & Jones, M. R. (2000). Expectancy, attention, and time. Cognitive Psychology, 41(3), 254–311. https://doi.org/10.1006/cogp.2000.0738
Bauer, A. K. R., Jaeger, M., Thorne, J. D., Bendixen, A., & Debener, S. (2015). The auditory dynamic attending theory revisited: A closer look at the pitch comparison task. Brain Research, 1626, 198–210. https://doi.org/10.1016/j.brainres.2015.04.03
Bouwer, F. L., & Honing, H. (2015). Temporal attending and prediction influence the perception of metrical rhythm: Evidence from reaction times and ERPs. Frontiers
in Psychology, 6, Article 1094. https://doi.org/10.3389/fpsyg.2015.01094
Coull, J. T., & Nobre, A. C. (2008). Dissociating explicit timing from temporal expectation with fMRI. Cuorrent Opinion in Neurobiolgy, 18(2), 137–144.
https://doi.org/10.1016/j.conb.2008.07.011
Crozier, J. B. (1997). Absolute pitch: Practice makes perfect, the earlier the better. Psychology of Music, 25(2), 110–119. https://doi.org/10.1177/0305735697252002
Cuddy, L. L. (1968). Practice effects in the absolute judgment of pitch. The Journal of the Acoustical Society of America, 43(5), 1069–1076.
https://doi.org/10.1121/1.1910941
Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83(5), 323–355.
https://doi.org/10.1037/0033-295X.83.5.32343
Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96(3), 459–491. https://doi.org/10.1037/0033-295x.96.3.459
Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13, 313–319.
https://doi.org/10.1111/1467-9280.0045
Jones, M. R., & Yee, W. (1997). Sensitivity to time change: The role of context and skill. Journal of Experimental Psychology: Human Perception and Performance, 23(3), 693–709. https://doi.org/10.1037/0096-1523.23.3.693
Lakatos, P., Karmos, G., Mehta, AD., Ulbert, I., & Schroeder, C. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 320(5872), 110–113. https://doi.org/10.1126/science.1154735
Lange, K. (2009). Brain correlates of early auditory processing are attenuated by expectations for time and pitch. Brain and Cognition, 69(1), 127–137.
https://doi.org/10.1016/j.bandc.2008.06.004
Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106, 119–159.
https://doi.org/10.1037/0033-295X.106.1.119
Lawrence, M., & Klein, R. (2013). Isolating exogenous and endogenous modes of temporal attention. Journal of Experimental Psychology: General, 142(2), 560–572. https://doi.org/10.1037/a0029023
Leon, G., & Michael, C. M. (1988). The rhythms of life: From clocks to chaos. Princeton University Press. https://doi.org/10.2307/j.ctv173dzwt
Leung, S., Recasens, M., Grimm, S., & Escera, C. (2013). Electrophysiological index of acoustic temporal regularity violation in the middle latency range. Clinical Neurophysiology, 124(12), 2397–2405.https://doi.org/10.1016/j.clinph.2013.06.001
Lin, W. M., Oetringer, D. A., Bakker-Marshall, I., Emmerzaal, J., Wilsch, A., ElShafei, H. A., Rassi, E., & Haegens, S. (2021). No behavioural evidence for rhythmic facilitation of perceptual discrimination. European Journal of Neuroscience, 55(11–12), 1–13. https://doi.org/10.1111/ejn.15208
Schwartze, M., Tavano, A., Schröger, E., & Kotz, S. A. (2012). Temporal aspects of prediction in audition: Cortical and subcortical neural mechanisms. International Journal of Psychophysiology, 83(2), 200–207. https://doi.org/10.1016/j.ijpsycho.2011.11.003
Starr, A., Aguinaldo, T., Roe, M., & Michalewski, H. J. (1997). Sequential changes of auditory processing during target detection: Motor responding versus mental counting. Electroencephalography & Clinical Neurophysiology: Electromyography & Motor Control, 105(3), 201–212. https://doi.org/10.1016/S0924-980X(97)00016-7.
Takegata, R., & Morotomi, T. (1999). Integrated neural representation of sound and temporal features in human auditory sensory memory: An event-related potential study. Neuroscience Letters, 274(3), 207–210. https://doi.org/10.1016/S0304-3940(99)00711-9