研究生: |
范揚群 Fan, Yang-Chun |
---|---|
論文名稱: |
一種驗證先進三閘極電晶體幾何變異之理論與實驗方法 A New Theory and Its Experimental Verifications of Geometric Variation in Advanced Trigate FinFETs |
指導教授: |
劉傳璽
Liu, Chuan-Hsi 莊紹勳 Chung, Shao-Shiun |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 邊線粗糙度 、線寬粗糙度 、表面粗糙度 、幾何變動率 |
英文關鍵詞: | line edge roughness, line width roughness, surface roughness, geometric variations |
DOI URL: | https://doi.org/10.6345/NTNU202204675 |
論文種類: | 學術論文 |
相關次數: | 點閱:126 下載:24 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了不斷的提高平面型金氧半場效電晶體(Metal-Oxide-Semiconductor Field Effect Transistor, MOSFET)的性能,藉由縮短通道長度以及降低氧化層厚度來達成汲極飽和電流(Id,sat)的提升,因此產生了許多問題,如短通道效應(short channel effect)、閘極漏電流(gate leakage)的產生等,使得發展出擁有更好之閘極控制能力的三閘極鰭式電晶體(trigate FinFET),卻又衍生出其鰭的高度提升下之幾何變動率(geometric variations)的問題。
本論文發展出了對於三閘極電晶體上幾何變動率的理論,包括了線(line)以及表面粗糙度(surface roughness),而幾何變動率與氧化層厚度之變動率(oxide thickness variations)分別可由量測閘極電容與閘極電流得到,實驗結果顯示,三閘極電晶體在鰭的高度不斷提升下,受到了嚴重的幾何變動率的影響,其中氧化層表面粗糙度造成了介面缺陷的產生,以及電子遷移率的下降,進而導致提高了臨界電壓的變動率(Vth),此外線粗糙度分別由邊線粗糙度(line edge roughness)以及線寬粗糙度(line width roughness)所組成,而三閘極電晶體顯示出更嚴重的邊線粗糙度,造成較大之汲極電流之變動率(Id),並且發現於長通道中所引起的原因為蝕刻製程(etchant process)所致,於短通道中所引起的原因為不精確的曝光所致。這些研究成果,提供了一個具有量化且具有系統的研究方法,對於我們在未來對於三閘極電晶體設計及量產上,頗具參考價值。
To improve the performance of MOSFET, the scaling of channel length and the oxide thickness will be able to increase the saturation current. But the additional problem including short channel and gate leakage are induced. On the other hand, trigate FinFET, which has a better gate controllability, creates another problem of geometric variations.
A new theory has been developed for geometric variations, including not only line but also surface roughness, of trigate FinFETs. The geometric variation and oxide thickness variations can be measured from gate capacitance and current variations, respectively. Experimental results show that trigate devices are subject to serious geometric variations as the fin height scales up, among which surface roughness creates interface traps and induces mobility degradation, leading to a worse Vth variation. In addition, line roughness is decoupled into line-edge and line-width roughness. Trigate devices exhibit rough line edges, induced by etchant process in long-channel regime and by inaccurate lithography in short-channel regime, leading to larger drain-current variation. These results provide us a systematic and quantifiable approach to improve geometric variations in the design and manufacturing of future trigate devices.
[2-1] G. Moore, “Cramming more Components onto Integrated Circuits,” in IEEE Electronics, p. 114, 1965.
[2-2] 劉傳璽,陳進來,第三版,半導體物理元件與製程-理論與實務,五南文化出版社,2006。
[2-3] E. R. Hsieh, S. S. Chung, C. H. Tsai, R. M. Huang, C. T. Tsai, et al., “A Novel and Direct Experimental Observation of the Discrete Dopant Effect in Ultra-Scaled CMOS Devices,” in IEEE Very Large Scale Integration Technology Digest, pp. 194-195, 2011.
[2-4] E. R. Hsieh, E. D. Wang, S. S. Chung, “A New Variation Plot to Examine the Interfacial-Dipole Induced Workfunction Variation in Advanced High-k Metal-Gate CMOS Devices,” in IEEE Very Large Scale Integration Technology Digest, p. 204, 2016.
[2-5] E. R. Hsieh, Y. L. Tsai, S. S. Chung, C. H. Tsai, R. M. Huang, et al., “The Understanding of Multi-Level RTN in Trigate MOSFETs through the 2D Profiling of Traps and Its Impact on SRAM Performance: A New Failure Mechanism Found,” in IEEE International Electron Devices Meeting, pp. 19.2.1-19.2.4, 2012.
[2-6] H. M. Tsai, E. R. Hsieh, S. S. Chung, C. H. Tsai, R. M. Huang, et al., “The Understanding of the Trap Induced Variation in Bulk Tri-gate Devices by a Novel Random Trap Profiling (RTP) Technique,” in IEEE VLSI Technology Digest, pp. 189-190, 2012.
[2-7] A. Asenov, S. Kaya, and A. R. Brown, “Intrinsic Parameter Fluctuations in Decananometer MOSFETs Introduced by Gate Line Edge Roughness,” IEEE Transactions on Electron Devices, Vol. 50, pp. 1254-1260, 2003.
[2-8] E. R. Hsieh, S. T. Lin, S. S. Chung, R. M. Huang, C. T Tsai, et al., “Gate Current Variation: A New Theory and Practice on Investigating the Off-State Leakage of Trigate MOSFETs and the Power Dissipation of SRAM,” in IEEE International Electron Devices Meeting, pp. 31.2.1-31.2.4, 2013.
[2-9] D. Reid, C. Millar, S. Roy, and A. Asenov, “Understanding LER-Induced MOSFET VT Variability—Part I: Three-Dimensional Simulation of Large Statistical Samples,” IEEE Transactions on Electron Devices, Vol. 57, pp. 2801-2807, 2010.
[2-10] S. Xiong, J. Bokor, Q. Xiang, P. Fisher, I. Dudley, P. Rao, H. Wang, and B. En, “Is Gate Line Edge Roughness a First-Order Issue in Affecting the Performance of Deep Sub-Micro Bulk MOSFET Devices?,” IEEE Transactions on Semiconductor Manufacturing, Vol. 17, 2004.
[2-11] S. Xiong, J. Bokor, Q. Xiang, P. Fisher, I. Dudley, and P. Rao, “Study of Gate Line Edge Roughness Effects in 50 nm Bulk MOSFET Devices,” in Proc. SPIE, Vol. 4689, pp. 733-741, 2002.
[2-12] S. Xiong, J. Bokor, “A Simulation Study of Gate Line Edge Roughness Effects on Doping Profiles of Short-Channel MOSFET Devices,” IEEE Transactions on Electron Devices, Vol. 51, 2004.
[2-13] Y. Ye, F. Liu, and M. Chen, “Statistical Modeling and Simulation of Threshold Variation Under Random Dopant Fluctuations and Line-Edge Roughness,” IEEE Transactions on Very Large Scale Integration System, Vol. 19, 2011.
[2-14] F. Zhao, Q. Wang, L. Zhang, and Z. Jiang, “Impact of Line Edge Roughness and Line Width Roughness on Critical Dimension Variation,” IEEE International Conference, Vol. 3, pp. 475-479, 2012.
[2-15] X. Jiang, R. Wang, T. Yu, J. Chen, and R. Huang, “Investigations on Line-Edge Roughness (LER) and Line-Width Roughness (LWR) in Nanoscale CMOS Technology: Part I–Modeling and Simulation Method,” IEEE Transactions on Electron Devices, pp. 3669-3675, 2013.
[2-16] R. Wang, X. Jiang, T. Yu, J. Fan, J. Chen, D. Z. Pan, and R. Huang, “Investigations on Line-Edge Roughness (LER) and Line-Width Roughness (LWR) in Nanoscale CMOS Technology: Part II–Experimental Results and Impacts on Device Variability,” IEEE Transactions on Electron Devices, pp. 3676-3682, 2013.
[3-1] M. Koh, W. Mizubayashi, K. Iwamoto, H. Murakami, T. Ono, M. Tsuno, T. Mihara, K. Shibahara, S. Miyazaki, and M. Hirose, “Limit of Gate Oxide Thickness Scaling in MOSFETs due to Apparent Threshold Voltage Fluctuation Induced by Tunnel Leakage Current,” IEEE Transactions on Electron Devices, Vol. 48, pp. 259-264, 2001.
[3-2] M. Depas, B. Vermeire, P. W. Mertens, R. L. V. Meirhaeghe, and M. M. Heyns, “Determination of Tunnelling Parameters in Ultra-Thin Oxide Layer Poly-Si/SiO2/Si Structures,” Solid-State Electronics, Vol. 38, pp. 1465-1471, 1995.
[3-3] M. Cassé, X. Garros, O. Weber, F. Andrieu, G. Reimbold, and F. Boulanger, “Study of N-induced Traps due to Nitrided Metal Gate in HK/MG nMOSFETs,” Proceedings of the European Solid State Device Research Conference, pp. 325-328, 2010.