研究生: |
陳厚安 Chen, Ho-An |
---|---|
論文名稱: |
種間競爭壓力促進尼泊爾埋葬蟲合作行為的地區性適應 Interspecific competition promotes local adaptation of cooperative behavior in burying beetles (Nicrophorus nepalensis) |
指導教授: |
林登秋
Lin, Teng-Chiu 沈聖峰 Shen, Sheng-Feng |
口試委員: |
孫烜駿
Sun, Syuan-Jyun 陳一菁 Chen, I-Ching 林登秋 Lin, Teng-Chiu 沈聖峰 Shen, Sheng-Feng |
口試日期: | 2024/01/05 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 地區性適應 、環境壓力 、種間競爭 、尼泊爾埋葬蟲 、合作行為 |
英文關鍵詞: | Local adaptation, environmental pressure, interspecific competition, Nicrophorus nepalensis, cooperative behavior |
研究方法: | 實驗設計法 、 比較研究 、 田野調查法 |
DOI URL: | http://doi.org/10.6345/NTNU202400415 |
論文種類: | 學術論文 |
相關次數: | 點閱:211 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地區性適應使生物能夠在在不同的環境條件下生存及繁衍,其牽涉演化及生態多種力量的交互作用,並影響生物型態、生活史、行為等各種層面的適應結果。而在行為生態方面,合作行為的演化更被認為是生物於變動的環境下,例如物理條件、生物作用等環境壓力的影響,所衍生的適應策略。然而,儘管知道環境壓力會影響社會行為,但其如何對於不同族群的合作行為產生地區性的適應分化,仍舊缺乏較完整的討論。對此本研究以分布於臺灣陽明山和合歡山兩個地區的尼泊爾埋葬蟲(Nicrophorus nepalensis)族群做為研究對象,探討其族群之間合作行為的地區性適應是受到哪些環境因素所驅使。研究透過野外調查和共園合作行為實驗,探討溫度和麗蠅競爭是否影響不同地區尼泊爾埋葬蟲的分布及合作行為的差異。調查結果顯示,在族群分布上,不同於全年分布的合歡山族群,陽明山地區的尼泊爾埋葬蟲只在特定的季節活動,並且在分布上與麗蠅發生種間競爭的程度也較低。此外,共園實驗結果也顯示,合歡山族群在面臨麗蠅競爭時,表現出比陽明山族群更合作的群體繁殖。研究表明麗蠅壓力的不同,造就地區之間的尼泊爾埋葬蟲族群在面對種間競爭的合作行為表現產生歧異。本研究揭示種間競爭影響了社會行為產生地區性適應的具體案例,並為生物之間的交互作用如何影響物種分化提供了新的見解。
Local adaptation allows organisms to survive and reproduce under various environmental conditions, involving the interplay of evolutionary and ecological forces that affect various aspects of adaptation, including morphology, life history, and behavior. In behavioral ecology, the evolution of cooperative behavior is considered an adaptive strategy derived from environmental pressures, such as physical conditions and biological interactions. However, despite understanding that environmental pressures influence social behavior, the discussion on how these pressures lead to local adaptation differentiation in cooperative behaviors among different populations remains incomplete. This study focuses on the populations of burying beetles Nicrophorus nepalensis found in Mt. Yangming and Mt. Hehuan in Taiwan to investigate the environmental factors driving the local adaptation of cooperative behaviors between these populations. Through field surveys and common garden experiments on cooperative behavior, this study explores whether temperature and blowfly competition affect the distribution and differences in cooperative behavior of N. nepalensis in different regions. The results show that, unlike the year-round population in Mt. Hehuan, the Mt. Yangming population of N. nepalensis is active only in specific seasons and has a lower degree of interspecific competition with blowflies. Furthermore, the common garden experiments revealed that the Mt. Hehuan population exhibits more cooperative group reproduction in the face of blowfly competition than the Mt. Yangming population. This study demonstrates that different pressures from blowflies lead to divergent cooperative behavior in facing interspecific competition between N. nepalensis populations in different regions. It provides a concrete case of how interspecific competition affects social behavior leading to local adaptation and offers new insights into how interactions between organisms influence species differentiation.
Al-Mosleh, S., Choi, G. P. T., Abzhanov, A., & Mahadevan, L. (2021). Geometry and dynamics link form, function, and evolution of finch beaks. Proceedings of the National Academy of Sciences, 118(46), e2105957118.
Alsterberg, C., Roger, F., Sundbäck, K., Juhanson, J., Hulth, S., Hallin, S., & Gamfeldt, L. (2017). Habitat diversity and ecosystem multifunctionality—The importance of direct and indirect effects. Science Advances, 3(2), e1601475.
Batucan, L. S., Hsu, Y.-H., Maliszewski, J. W., Wang, L.-J., & Lin, C.-P. (2021). Novel wing display and divergent agonistic behaviors of two incipient Psolodesmus damselflies. The Science of Nature, 108(6), 49.
Beck, S., Kuningas, S., Esteban, R., & Foote, A. D. (2012). The influence of ecology on sociality in the killer whale (Orcinus orca). Behavioral Ecology, 23(2), 246–253.
Benbow, M. E., Tomberlin, J. K., & Tarone, A. M. (Eds.). (2015). Carrion ecology, evolution, and their applications. CRC press.
Blanquart, F., Kaltz, O., Nuismer, S. L., & Gandon, S. (2013). A practical guide to measuring local adaptation. Ecology Letters, 16(9), 1195–1205.
Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection (arXiv:2004.10934). arXiv.
Boenisch, F., Rosemann, B., Wild, B., Dormagen, D., Wario, F., & Landgraf, T. (2018). Tracking all members of a honey bee colony over their lifetime using learned models of correspondence. Frontiers in Robotics and AI, 5.
Cai, C., Tihelka, E., Giacomelli, M., Lawrence, J. F., Ślipiński, A., Kundrata, R., Yamamoto, S., Thayer, M. K., Newton, A. F., Leschen, R. A. B., Gimmel, M. L., Lü, L., Engel, M. S., Bouchard, P., Huang, D., Pisani, D., & Donoghue, P. C. J. (2022). Integrated phylogenomics and fossil data illuminate the evolution of beetles. Royal Society Open Science, 9(3), 211771.
Chan, S.-F., Rubenstein, D. R., Chen, I.-C., Fan, Y.-M., Tsai, H.-Y., Zheng, Y.-W., & Shen, S.-F. (2023). Higher temperature variability in deforested mountain regions impacts the competitive advantage of nocturnal species. Proceedings of the Royal Society B: Biological Sciences, 290(1999), 20230529.
Chan, S.-F., Shih, W.-K., Chang, A.-Y., Shen, S.-F., & Chen, I.-C. (2019). Contrasting forms of competition set elevational range limits of species. Ecology Letters, 22(10), 1668–1679.
Chen, B.-F., Liu, M., Rubenstein, D. R., Sun, S.-J., Liu, J.-N., Lin, Y.-H., & Shen, S.-F. (2020). A chemically triggered transition from conflict to cooperation in burying beetles. Ecology Letters, 23(3), 467–475.
Christin, S., Hervet, É., & Lecomte, N. (2019). Applications for deep learning in ecology. Methods in Ecology and Evolution, 10(10), 1632–1644.
Cornwallis, C. K., Botero, C. A., Rubenstein, D. R., Downing, P. A., West, S. A., & Griffin, A. S. (2017). Cooperation facilitates the colonization of harsh environments. Nature Ecology & Evolution, 1(3), Article 3.
Delph, L. F. (2018). The study of local adaptation: a thriving field of research. Journal of Heredity, 109(1), 1–2.
Doran, C., Bierbach, D., Lukas, J., Klamser, P., Landgraf, T., Klenz, H., Habedank, M., Arias-Rodriguez, L., Krause, S., Romanczuk, P., & Krause, J. (2022). Fish waves as emergent collective antipredator behavior. Current Biology, 32(3), 708-714.e4.
Eggert, A.-K., & Müller, J. K. (1992). Joint breeding in female burying beetles. Behavioral Ecology and Sociobiology, 31(4), 237–242.
Foitzik, S., Achenbach, A., & Brandt, M. (2009). Locally adapted social parasite affects density, social structure, and life history of its ant hosts. Ecology, 90(5), 1195–1206.
Goodwin, M., Halvorsen, K. T., Jiao, L., Knausgård, K. M., Martin, A. H., Moyano, M., Oomen, R. A., Rasmussen, J. H., Sørdalen, T. K., & Thorbjørnsen, S. H. (2022). Unlocking the potential of deep learning for marine ecology: Overview, applications, and outlook. ICES Journal of Marine Science, 79(2), 319–336.
Green, S. D., Duarte, R. C., Kellett, E., Alagaratnam, N., & Stevens, M. (2019). Colour change and behavioural choice facilitate chameleon prawn camouflage against different seaweed backgrounds. Communications Biology, 2(1), Article 1.
Greenberg, B., & Kunich, J. C. (2002). Entomology and the law: flies as forensic indicators. Cambridge University Press.
Herrel, A., Soons, J., Aerts, P., Dirckx, J., Boone, M., Jacobs, P., Adriaens, D., & Podos, J. (2010). Adaptation and function of the bills of Darwin’s finches: Divergence by feeding type and sex. Emu - Austral Ornithology, 110(1), 39–47.
Huang, J.-P., & Lin, C.-P. (2010). Diversification in subtropical mountains: Phylogeography, Pleistocene demographic expansion, and evolution of polyphenic mandibles in Taiwanese stag beetle, Lucanus formosanus. Molecular Phylogenetics and Evolution, 57(3), 1149–1161.
Hwang, W., & Lin, H.-M. (2013). Carcass fungistasis of the burying beetle Nicrophorus nepalensis hope (Coleoptera: Silphidae). Psyche: A Journal of Entomology, 2013, e162964.
Jang, Y.-S., Shen, S.-F., Juang, J.-Y., Huang, C., & Lo, M.-H. (2022). Discontinuity of diurnal temperature range along elevated regions. Geophysical Research Letters, 49(6), e2021GL097551.
Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local adaptation. Ecology Letters, 7(12), 1225–1241.
Kent, C. M., Peele, A. M., & Sherry, T. W. (2019). Comparing four simple, inexpensive methods for sampling forest arthropod communities. Journal of Field Ornithology, 90(1), 57–69.
Lin, Y.-H., Chan, S.-F., Rubenstein, D. R., Liu, M., & Shen, S.-F. (2019). Resolving the paradox of environmental quality and sociality: the ecological causes and consequences of cooperative breeding in two lineages of birds. The American Naturalist, 194(2), 207–216.
Lin, Y.-H., Chen, Y.-Y., Rubenstein, D. R., Liu, M., Liu, M., & Shen, S.-F. (2023). Environmental quality mediates the ecological dominance of cooperatively breeding birds. Ecology Letters, 26(7), 1145–1156.
Liu, M., Chan, S.-F., Rubenstein, D. R., Sun, S.-J., Chen, B.-F., & Shen, S.-F. (2020). Ecological transitions in grouping benefits explain the paradox of environmental quality and sociality. The American Naturalist, 195(5), 818–832.
Liu, M., Chen, B.-F., Rubenstein, D. R., & Shen, S.-F. (2020). Social rank modulates how environmental quality influences cooperation and conflict within animal societies. Proceedings of the Royal Society B: Biological Sciences, 287(1935), 20201720.
Liwanag, H. E. M., Berta, A., Costa, D. P., Budge, S. M., & Williams, T. M. (2012). Morphological and thermal properties of mammalian insulation: The evolutionary transition to blubber in pinnipeds. Biological Journal of the Linnean Society, 107(4), 774–787.
Loik, M. E. (2008). The effect of cactus spines on light interception and photosystem ii for three sympatric species of opuntia from the mojave desert. Physiologia Plantarum, 134(1), 87–98.
Maan, M. E., & Cummings, M. E. (2012). Poison frog colors are honest signals of toxicity, particularly for bird predators. The American Naturalist, 179(1), E1–E14.
Nobel, P. S. (1983). Spine influences on PAR interception, stem temperature, and nocturnal acid accumulation by cacti. Plant, Cell & Environment, 6(2), 153–159.
Norouzzadeh, M. S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M. S., Packer, C., & Clune, J. (2018). Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proceedings of the National Academy of Sciences, 115(25), E5716–E5725.
Pichler, M., & Hartig, F. (2023). Machine learning and deep learning—A review for ecologists. Methods in Ecology and Evolution, 14(4), 994–1016.
Podos, J., & Nowicki, S. (2004). Beaks, adaptation, and vocal evolution in Darwin’s finches. BioScience, 54(6), 501–510.
Post, D. M., & Palkovacs, E. P. (2009). Eco-evolutionary feedbacks in community and ecosystem ecology: Interactions between the ecological theatre and the evolutionary play. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1523), 1629–1640.
Sclocco, A., Ong, S. J. Y., Pyay Aung, S. Y., & Teseo, S. (2021). Integrating real-time data analysis into automatic tracking of social insects. Royal Society Open Science, 8(3), 202033.
Scott, L. M. (1994). Images in advertising: The need for a theory of visual rhetoric. Journal of Consumer Research, 21(2), 252–273. https://doi.org/10.1086/209396
Shen, S.-F., Emlen, S. T., Koenig, W. D., & Rubenstein, D. R. (2017). The ecology of cooperative breeding behaviour. Ecology Letters, 20(6), 708–720.
Shen, S.-F., Reeve, H. K., Emlen, S. T., Liu, M., & Rubenstein, D. (2023). Group size and the resolution of insider–outsider conflict in animal societies. Animal Behaviour, 205, 107–116.
Sikes, D. S., Madge, R. B., & Trumbo, S. T. (2006). Revision of Nicrophorus in part: New species and inferred phylogeny of the nepalensis-group based on evidence from morphology and mitochondrial DNA (Coleoptera : Silphidae : Nicrophorinae). Invertebrate Systematics, 20(3), 305–365.
Singh, K. I., Kurahashi, H., & Kano, R. (1979). A preliminary key to the common calliphorid flies of Peninsular Malaysia (Insecta: Diptera). The Bulletin of Tokyo Medical and Dental University, 26(1), 5–24.
Sun, S.-J., Rubenstein, D. R., Chen, B.-F., Chan, S.-F., Liu, J.-N., Liu, M., Hwang, W., Yang, P.-S., & Shen, S.-F. (2014). Climate-mediated cooperation promotes niche expansion in burying beetles. eLife, 3, e02440.
Tiffin, P., & Ross-Ibarra, J. (2014). Advances and limits of using population genetics to understand local adaptation. Trends in Ecology & Evolution, 29(12), 673–680.
Tigano, A., & Friesen, V. L. (2016). Genomics of local adaptation with gene flow. Molecular Ecology, 25(10), 2144–2164.
Trumbo, S. T. (1992). Monogamy to communal breeding: Exploitation of a broad resource base by burying beetles (Nicrophorus). Ecological Entomology, 17(3), 289–298.
Trumbo, S. T., & Wilson, D. S. (1993). Brood discrimination, nest mate discrimination, and determinants of social behavior in facultatively quasisocial beetles (Nicrophorus spp.). Behavioral Ecology, 4(4), 332–339.
Tsai, H.-Y., Rubenstein, D. R., Chen, B.-F., Liu, M., Chan, S.-F., Chen, D.-P., Sun, S.-J., Yuan, T.-N., & Shen, S.-F. (2020). Antagonistic effects of intraspecific cooperation and interspecific competition on thermal performance. eLife, 9, e57022.
Tsai, H.-Y., Rubenstein, D. R., Fan, Y.-M., Yuan, T.-N., Chen, B.-F., Tang, Y., Chen, I.-C., & Shen, S.-F. (2020). Locally-adapted reproductive photoperiodism determines population vulnerability to climate change in burying beetles. Nature Communications, 11(1), Article 1.
Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M. B., Balaguer, L., Benito-Garzón, M., Cornwell, W., Gianoli, E., van Kleunen, M., Naya, D. E., Nicotra, A. B., Poorter, H., & Zavala, M. A. (2014). The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 17(11), 1351–1364.
Wang, L.-Y., Huang, W.-S., Tang, H.-C., Huang, L.-C., & Lin, C.-P. (2018). Too hard to swallow: A secret secondary defence of an aposematic insect. Journal of Experimental Biology, 221(2), jeb172486.
Whitlock, M. C. (2015). Modern approaches to local adaptation. The American Naturalist, 186(S1), S1–S4.
Yan, L., Pape, T., Meusemann, K., Kutty, S. N., Meier, R., Bayless, K. M., & Zhang, D. (2021). Monophyletic blowflies revealed by phylogenomics. BMC Biology, 19(1), 230.
王鵬(2023)。間歇性遷入與染色體倒位共同影響尼泊爾埋葬蟲種內遺傳多樣性及環境適應。碩士論文,國立臺灣大學生態學與演化生物學研究所。
張崇凡(2020)。社會行為如何影響兩相鄰同屬物種的競爭與分布。碩士論文,國立臺灣大學生態學與演化生物學研究所。
張景雅(2022)。森林破碎化如何影響尼泊爾埋葬蟲(Nicrophorus nepalensis)與衿覆葬甲(N. schawalleri)的海拔分布界線。碩士論文,國立臺灣大學昆蟲學研究所。
陳澔(2022)。區域性氣候條件決定埋葬蟲族群滯育的時程。碩士論文,國立臺灣大學生態學與演化生物學研究所。
黃詩蘋(2022)。同屬物種間的競爭抑制尼泊爾埋葬蟲的合作行為。碩士論文,國立臺灣大學生態學與演化生物學研究所。
詹勳承(2021)。種間競爭壓力對尼泊爾埋葬蟲繁殖偏離的影響。碩士論文,國立臺灣大學氣候變遷與永續發展國際學位學程。