簡易檢索 / 詳目顯示

研究生: 賴珮華
Lai, Pei-Hua
論文名稱: 多孔中空纖維薄膜的合成與其電噴灑/質譜法上之應用
The synthesis of array porous hollow fiber membranes and its applications in electrospray ionization/mass spectrometry
指導教授: 林震煌
Lin, Cheng-Huang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 73
中文關鍵詞: 紙片-電噴灑質譜法靜電紡絲法中空纖維液-液微萃取
英文關鍵詞: paper-spray/MS, electrospinning, hollow fibers, liquid-liquid microextraction
論文種類: 學術論文
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用靜電紡絲法(electrospinning)製造出排列方式及不同特性的纖維薄膜,取代傳統紙片電噴灑(paper-spray)質譜法中使用的層析濾紙,以數種藥物探討不同纖維材質對電噴灑效果及偵測靈敏度的影響。實驗分別以聚乳酸、聚偏二氟乙烯、尼龍以及聚碳酸酯製成纖維薄膜。這些高分子材料先溶解於有機溶劑中,利用高電壓做為驅動力,經電噴灑紡頭以電噴灑方式射出纖維絲後,再由高速收集滾筒匯集成薄膜。薄膜的厚度約在20 μm 之內。此外,為探討纖維排列對偵測靈敏度的影響,利用不同構造的電噴灑紡頭,分別製成各式規則與不規則排列纖維薄膜進行比較。再者,當單層薄膜的厚度為奈米等級時,由於缺少韌性及足夠的強度支撐,遇到有機溶劑時容易變形捲曲而無法使用。為了克服此一缺點,本研究發展以鋁箔紙支撐的各式超薄的陣列多孔中空纖維膜,不僅可以穩定電噴灑現象,也不容易變形。實驗結果發現,各式薄膜當中,以聚乳酸製成的厚度超薄、表面平滑、具規則排列的纖維其電噴灑效果最好。究其原因可能是表面規則排列且厚度薄的纖維,可以有效的提升溶劑攜帶樣品的傳輸效率。在相同質譜條件之下,比起傳統使用的層析濾紙,偵測極限降低一個數量級。除此之外,為了更增加靈敏度,以市售聚丙烯中空纖維,先進行液-液微萃取之後,再將中空纖維的一端裁切成25 度尖端斜口的形狀,直接作為紙片-電噴灑的游離源進行檢測。結果發現,配合液-液微萃取的步驟,更低濃度的分析物可以有效的被萃取出來,降低偵測極限,提高靈敏度。實驗發現在相同質譜條件之下,比起傳統使用的層析濾紙法,偵測極限幾乎降低~2 個數量級。本研究也針對尿液中添加的藥物進行檢測,皆可快速並準確的鑑定分析樣品。

    Various types of membranes, the so-called array porous hollow fibers, were synthesized and used in paper-spray mass spectrometry (PS-MS). By using several abused drugs as the test samples, the ionization efficiencies and the limit of detections were investigated when the different types of membranes were used. For making these membranes, polymer of poly-L-lactic acid (PLLA), polyvinylidene fluoride (PVDF), nylon and polycarbonate (PC) were dissolved in organic solvents, respectively, and then by means of electrospinning technique, the fibers can be collected on a high speed roller, leading to form a piece
    of membrane. Thickness of these membranes was within 20 μm. In addition, it is found out from the research that using aluminum foil to support fiber can not only stabilize electric spray phenomenon but also make the fiber not easy deformed. The findings show that the limit of detection can be dramatic improved when PLLA was used which is the best of all. This is because PLLA is very toughness and extremely thin, leading to the sample solution much easier ejected and ionized toward the mass inlet. Under the same MS conditions, the detection limit improve one order than the use of the chromatography paper. And after the liquid-liquid microextraction process, one of the end of the hollow fiber was cut into a bevel-shaped, and then using directly for electrospray ionization. The findings show that the limit of detection can be improved ~ 2 orders. Detailed information and the use the technique in the analysis of a urine sample are reported.

    目錄 摘要 I Abstract II 目錄 III 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 研究目的 1 1-2 高分子材料簡介 2 1-2-1 聚乳酸 (Polylactic acid, PLA) 2 1-2-2 聚碳酸酯 (Polycarbonate, PC) 2 1-2-3 聚偏二氟乙烯 (Polyvinylidene fluoride, PVDF) 3 1-2-4 尼龍 (Nylon) 3 1-2-5 聚乙二醇 / 聚氧乙烯 3 1-2-6聚丙烯 (Polypropylene, PP) 4 1-3 分析物簡介 5 第二章 分析方法及原理 8 2-1 液相層析電噴灑串聯式質譜儀LC/ESI-MS 8 2-1-1紙片電噴灑質譜法(paper spray-mass spectrometry, PS-MS) 9 2-1-2 電噴灑離子化 (ESI) 原理及離子形成機制 11 2-1-3 離子阱質量分析器簡介 15 2-1-4 質量偵測器 16 2-2靜電紡絲法 (Electrospinning) 17 2-2-1靜電紡絲簡介 17 2-2-2 靜電紡絲原理 18 2-2-3 靜電紡絲之參數 20 2-2-4同軸靜電紡絲 (Co-axial electrospinning) 21 第三章 儀器、藥品與實驗方法 22 3-1 紙片電噴灑質譜法 (Paper spray/ESI-MS) 22 3-2 纖維薄膜製作方法 25 3-2-1 陣列微米級中空多孔纖維薄膜 25 3-2-2奈米級纖維薄膜 29 3-3 液-液微萃取 (Liquid-liquid microextraction) 31 3-4 儀器及周邊設備列表 33 3-5 藥品列表 36 第四章 結果與討論 39 4-1 標準品的檢測 39 4-1-1 實驗條件 39 4-1-2 樣品配製 39 4-1-3 偵測標準樣品 40 4-2 不同纖維薄膜的比較 42 4-2-1 實驗條件 42 4-2-2陣列微米級中空多孔纖維薄膜 42 4-2-3 奈米級纖維薄膜 44 4-2-4 以鋁箔紙支撐纖維薄膜 45 4-2-5 不同纖維薄膜的實驗結果 46 4-2-6 偵測極限 54 4-3 以鋁箔紙支撐聚碳酸酯纖維的真實樣品應用 56 4-3-1 取締藥錠偵測 56 4-3-2 尿液樣品偵測 58 4-4 液-液微萃取實驗結果 59 4-4-1 實驗條件 59 4-4-2 標準品萃取 59 4-4-3 尿液樣品萃取 61 第五章 結論 66 參考文獻 67 期刊論文與研究發表 73

    [1] H. Wang, J. J. Liu, R. G. Cooks, Z. Ouyang, Angew. Chem. 49 (2010) 877.
    [2] J. J. Liu, H. Wang, N. E. Manicke, J. M.Lin, R. G. Cooks, Z. Ouyang, Anal. Chem. 82 (2010) 2463.
    [3] W. Xu, N. E. Manicke, R. G. Cooks, Z. Ouyang, J. Assoc. Lab. Auto 15 (2010) 433.
    [4] S. Jain, A. Heiser, A. R. Venter, Analyst 136 (2011) 1298.
    [5] H. Wang, N. E. Manicke, Q. A. Yang, L. X. Zheng, R. Y. Shi, R. G. Cooks, O. Y. Zheng, Anal. Chem. 83 (2011) 1197.
    [6] Z. Zhang, W. Xu, N. E. Manicke, R. G. Cooks, Z. Ouyang, Anal. Chem. 84 (2012) 931.
    [7] A. Y. Li, H. Wang, Z. Ouyange, R. G. Cooks, Chem. Commun. 47 (2011) 2811.
    [8] N. E. Manicke, Q. A. Yang, H.Wang, S. Oradu, Z. Ouyange, R. G. Cooks, Int. J. Mass. Spectrom. 300 (2011) 123.
    [9] N. E. Manicke, P. Abu-Rabie, N. Spooner, Z. Ouyange, R. G. Cooks, J. Am. Soc. Mass. Spectrom. 22 (2011) 1501
    [10] R. D. Espy, N. E. Manicke, Z. Ouyange, R. G. Cooks, Analyst. 137 (2012) 2344.
    [11] Z. Zhang, R. G. Cooks, Z. Ouyange, Analyst. 137 (2012) 2556.
    [12] S. A. Oradu, R. G. Cooks, Anal. Chem. 84 (2012) 10576.
    [13] Z. Zhange, W. Xu, N. E. Manicke, R. G. Cooks, Z. Ouyang, Anal. Chem. 84 (2012)31.
    [14] Q. Yang, N. E. Manicke, H. Wang, C. Petucci, R. G. Cooks, Z. Ouyang, Anal. Bioanal. Chem. 404 (2012) 1389.
    [15] R. D. Espy, A.R. Muliadi, Z. Ouyang, R. G. Cooks, Int. J. Mass. Spectrom. 167 (2012) 325.
    [16] Q. Yang, H. Wang, J. D. MAAS, W. J. Chappell, N. E. Manicke, R. G. Cooks, Z. Ouyang, Int. J. Mass. Spectrom. 312 (2012) 201.
    [17] A. Li, P. Wei, H. C. Hsu, R. G. Cooks, Analyst. 138 (2013) 4624.
    [18] H. Wang, Y. Ren, M. N. McLuckey, N. E. Manicke, J. Park, L. Zheng, R. Shi, R. G. Cooks, Z. Ouyang, Anal. Chem. 85 (2013) 11540.
    [19] A. M. Hamid,A. K. Jarmusch, V. Pirro, D. H. Pincus,B. G. Clay,G. Gervasi,R. G. Cooks, Anal. Chem. 86 (2014) 7500.
    [20] R. D. Espy, S. F. Teunissen, N. E. Manicke, Y. Ren, Z. Ouyang, A. V. Asten, R. G. Cooks, Anal. Chem. 86 (2014) 7712.
    [21] F. Tretter, Nervenarzt. 68 (1997) 922.
    [22] M. Takahashi, M. Nagashima, J. Suzuki, T. Seto, I. Yasuda, T. Yoshida, Talanta 77 (2009) 1245.
    [23] R. L. Cowan, E. J. Charboneau, M. M. Benningfield, T. B. Monroe, Neuroimaging. (2013) 655.
    [24] J. L. Poklis, D. J. Clay, A. Poklis, J. Anal. Toxicol. 38 (2014) 113.
    [25] M. Yamashita, J. B. Fenn, J. Phys. Chem. 88 (1984) 4451.
    [26] J. J. Liu, H. Wang, N. E. Manicke, J. M. Lin, R. G. Cooks, Z. Ouyang, Anal. Chem. 82 (2010) 2463.
    [27] N. E. Manicke, Q. A. Yang, H. Wang, S. Oradu, Z. Ouyang, R. G. Cooks, Int. J. Mass Spectrom. 300 (2011) 123.
    [28] R. D. Espy, N. E. Manicke, Z. Ouyang, R. G. Cooks, Analyst 137 (2012) 2344.
    [29] R. Garrett, C. M. Rezende, D. R. Ifa, Anal. Methods 5 (2013) 5944.
    [30] A. Naccarato, S. Moretti, G. Sindona, A. Tagarelli, Anal. Bioanal. Chem. 405 (2013) 8267.
    [31] A. Li, P. Wei, H. C. Hsu, R. G. Cooks, Analyst 138 (2013) 4624.
    [32] F. Mazzotti, L. D. Donna, D. Taverna, M. Nardi, D. Aiello, A. Napoli, G. Sindona, Int. J. Mass Spectrom. 352 (2013) 87–91.
    [33] Y. Zhang, Y. Ju, C. Huang, V. H. Wysocki, Anal. Chem. 86 (2014) 1342.
    [34] A. M. Hamid, A. K. Jarmusch, V. Pirro, D. H. Pincus, B. G. Clay, G. Gervasi, R. G. Cooks, Anal. Chem. 86 (2014) 7500.
    [35] R. D. Espy, S. F. Teunissen, N. E. Manicke, Y. Ren, Z. Ouyang, A. V. Asten, R. G. Cooks, Anal. Chem. 86 (2014) 7712.
    [36] R. B. Cody, A. J. Dane, Rapid Commun. Mass Spectrom. 28 (2014) 893.
    [37] M. G. Ikonomou, A. T. Blades, P. Kebarle, Anal. Chem. 63 (1991) 1989.
    [38] A. Gomez, K. Tang, Phys. Fluid. 65 (1994) 404.
    [39] G. R. Agnes, I. I. Stewart, G. Horlick, Appl. Spectrosc. 48 (1994) 1347.
    [40] P. Kebarle, L. Tang, Anal. Chem. 65 (1993) 972.
    [41] M. Dole, L. L. Mack, R. L. Hines, R. C. Mobley, L. D. Ferguson, M. B. Alice, J. Chem. Phys. 49 (1968) 2240.
    [42] J. V. Iribarne, B. A. Thornson, J. Chem. Phys. 64 (1976) 15.
    [43] J. B.Fenn, J. Am. Soc. Mass Spectrom. 4 (1993) 524.
    [44] F. Anton, Process and Apparatus for Preparing Artificial Threads, U.S. Patent 1975504
    [45] D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, J. App, Psys. 87 (2000) 4531
    [46] L. Larrondo, R. S. J. Manley. Polymer Phys. 19 (1981) 921
    [47] G. Taylor, Soc. London Series a-Math. Phys, Sci 313 (1989) 453
    [48] D. H. Reneker, I. Chun, Nano tech 7 (1996) 216
    [49] 顧克壯等學者, 靜電紡絲技術及其應用化學世界 2005 ,第5期, 313
    [50] C. J. Buchko, Polymer, 40 (1999) 7397
    [51] K. H. Lee, H. Y. Kim, H. J. Bang, Y. H.Jung, S. G. Lee, Polymer 44 ( 2003) 4029
    [52] J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, N. C. Tan, Polymer 42 (2001) 8163
    [53] M. Lallave, J. Bedia, R. Ruiz-Rosas, J. Rodriguez-Mirasol, T. Cordero, J. C. Otero, M. Marquez, A. Barrero, I. G. Loscertales, Adv. Eng. Mater. 19 (2007) 4292
    [54] 孫良奎,程海峰,楚增勇,熱加工工藝技術與材料研究, 7, 83, 2008.
    [55] Dale J. Wound dressings. Prof Nurse 12 (1997) 2
    [56] M. Rothe, V. Falanga, Arch Dermatol. 125 (1989) 1390
    [57] S. K. Purna, M. Burns 26 (2000) 54
    [58] J. C. Yang, S. Y. Lee, W. C. Tseng, Y. C. Shu, J. C. Lu, H. S. Shie, C. C. Chen, Macromol. Mater. Eng. 297 (2011) 115
    [59] E. Wallis, T. M. Griffin, N. Popkie, Jr., M. A. Eagan, R. F. MacAtee, D. Vrazel, J. McKinly, Proc. SPIE-Int. Soc. Opt. Eng. 5795 (2005) 54.
    [60] J. T. McCann, D. Li, Y. Xia, J. Mater. Chem.15 (2005) 735.
    [61] S. Sakuldao,T. Yoovidhya, S. Wongsasulak, Science Asia 37 (2011) 335.
    [62] F. Z. Md, L. Wang, G. Guan, K. Farzana, J. Bioeng. Biomed. Sci. 3 (2013) 6.
    [63] Y. S. Huang, C. C. Kuo, Y. C. Shu, S. C. Jang, W. C. Tsen, F. S. Chuang, C. C. Chen, Macromol. Chem. Phys. 215 (2014) 879.
    [64] J. C. Yang, S. Y. Lee, W. C. Tseng, Y. C. Shu, J. C. Lu, H. S. Shie, C. C. Chen, Macromol. Mater. Eng. 297 (2012) 115.
    [65] A. V. Bazilevsky, A. L. Yarin, C. M. Megaridis, Langmuir 23 (2007) 2311.
    [66] H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, Y. Cui, Nano Lett. 10 (2010) 4242.
    [67] H. Qu, S. Wei, Z. Guo, J. Mater. Chem. A1 (2013) 11513.
    [68] C.S. Jhang, H. Lee, Y. S. He, J. T. Liu, C.H. Lin, Electrophoresis 33 (2012) 1.
    [69] H. Lee, C.S. Jhang, J.T. Liu, C.H. Lin, J. Sep. Sci. 35 (2012) 2822.
    [70] Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakriskna, Compos. Sci. Technol. 63 (2003) 2223.
    [71] M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, J. H. Wendorff, Adv. Mater. 13 (2001) 70.
    [72] K. L. Ou, C. S. Chen, L. H. Lin, J. C. Lu, Y. C. Shu, W. C. Tseng, J. C. Yang, S. Y. Lee, C. C. Chen, Eur. Polym. J. 47 (2011) 882.
    [73] H. Na, P. Chen, S. C. Wong, S. Hague, Q. Li, Polymer 53 (2012) 2736.
    [74] Y. Yamini, S. Seidi, R. Feizbakhsh, T. Baheri, M. Rezazadeh, J. Sep. Sci. 37 (2014) 2364.
    [75] P. Praveen, K. C. Loh, Chem. Eng. J. 255 (2014) 641.
    [76] B. Hua, P. K. So, Z. P. Yao, Anal. Chim. Acta 817 (2014) 1

    無法下載圖示 本全文未授權公開
    QR CODE