簡易檢索 / 詳目顯示

研究生: 于書翰
Shu-Han Yu
論文名稱: 矽奈米線場效應電晶體之製備: GST的偵測與沖洗緩衝液之測試
指導教授: 孫英傑
Sun, Ying-Chieh
陳逸聰
Chen, Yit-Tsong
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
中文關鍵詞: 矽奈米線場效應電晶體矽奈米線場效應電晶體生物感測器
論文種類: 學術論文
相關次數: 點閱:154下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Rab3A 是一種小分子量的GTP結合蛋白質,常被用來調控許多種生理機制,包含了基因表現(Gene expression)、細胞骨架的重排(Cytoskeleton rearrangement)、胞吐作用(Exocytosis)等。像這樣的GTP結合蛋白質是具有水解GTP的活性,而這些蛋白質通常與GDP結合時是呈現非活化狀態,當被活化時,會進行GDP與GTP的交換,再與下游的蛋白質進行後續的作用。胞吐作用(Exocytosis),胞吞作用(endocytosis)和胞吞後轉移作用(transcytosis)是由於細胞內的囊泡運輸(vesicle trafficking)而進行的,經由胞吐分泌(exocytosis secretion)所釋放出的神經傳導物質與賀爾蒙是神經突觸傳輸(synaptic neurotransmission)與細胞-細胞聯絡(cell-cell communication)的一個基本步驟,並同時牽涉更多及複雜的蛋白質與蛋白質間的交互作用。

    由於Rab3A的某段氨基酸序列上有標定一GST酵素,因此本實驗中將使用GSH進行矽奈米線的表面修飾,並以官能化的場效應電晶體初步測試GST的電訊號即時偵測以及同時測試沖洗緩衝溶液之沖洗效率,以期晶片具有可再利用之可行性。

    生物與化學物種的偵測與定量分析是健康保健和生命科學領域中的中心點,且涵蓋了疾病的診斷以及新型藥物的檢測。半導體奈米線所架構出的電子元件常被做為可對於生物和化學物種的即時電訊號偵測,並且為一超靈敏的實驗平台。在此論文中,我們將詳細地介紹奈米線電子偵測器的架構。第一:將介紹單晶且均勻的矽奈米線合成以及後續的矽奈米線溶液的均勻懸浮液。第二:詳述奈米線電子元件的整合製程。第三:電子元件的化學表面修飾而使其具有功能性。第四:修飾後之生物感測器的電訊號偵測。

    Small GTP binding proteins, also called G-proteins, for example Rab3A, are involved in modulating many physiological activities, including gene expression, cytoskeleton rearrangement, exocytosis, etc. These G-proteins have GTPase activity and normally are inactive bound with GDP; when activated, GDP will be exchanged with GTP to allow the G-proteins to interact with downstream proteins. Exocytosis, endocytosis and transcytosis are performed by intracellular vesicle trafficking. Exocytosis secretion of neurotransmitters and hormones is a fundamental step in synaptic neurotransmission and cell-cell communication and involves sequential steps of complex protein-protein interactions.

    In this experiment, we used GSH for the surface modification of silicon nanowires. And we then conducted a real-time, label-free electrical signal measurement for GST biosensing, and test of the washing efficiency with washing buffer by silicon nanowire field-effect transistors.

    Detection and quantification of biological and chemical species are central to many areas of healthcare and life sciences, ranging from diagnosing disease to the discovery and screening of new drug molecules. Semiconductor nanowires configured as electronic devices have emerged as a general platform for ultra-sensitive direct electrical detection of biological and chemical species. Here we describe a detailed protocol to fabricate nanowire electronic sensors. First, the growth of uniform, single crystal silicon nanowires, and subsequent isolation of the nanowires as stable suspensions are outlined. Second, fabrication of addressable nanowire device arrays is described. Third, modification of the nanowire device surfaces with receptors is described. Fourth, an example modification and measurements of the electrical response from devices are detailed.

    The silicon nanowire (SiNW) devices have demonstrated applications for label-free, ultrasensitive and highly-selective real-time detection of a wide range of biological and chemical species, including proteins, nucleic acids, small molecules and viruses.

    目錄 中文摘要.........................................................................................................................i 英文摘要........................................................................................................................ii 目錄...............................................................................................................................iii 圖目錄...........................................................................................................................vi 第一章 序論...........................................................................................................1 1-1 前言.....................................................................................................................1 1-2 積體電路.............................................................................................................2 1-3 半導體材料.........................................................................................................3 1-3.1 半導體材料的導電性及其種類..................................................................3 1-3.2 元素矽及其晶格結構..................................................................................4 1-3.3 半導體中的導電載子---電子與電洞..........................................................5 1-3.4 摻雜(Doping)..........................................................................................6 1-4 金屬與n 型半導體之能帶................................................................................7 1-5 金屬-n type 半導體之電流...............................................................................9 1-6 GTP binding proteins.........................................................................................11 1-6.1 簡介............................................................................................................11 1-6.2 Rab proteins................................................................................................12 1-6.3 Protein-protein interactions.........................................................................13 第二章 實驗系統與晶片製程技術..........................................................................17 2-1 實驗系統...........................................................................................................17 2-1.1 實驗系統概述............................................................................................17 2-1.2 實驗儀器的簡介........................................................................................18 2-2 矽奈米線場效應電晶體的架構.......................................................................20 2-2.1 晶片製程簡介............................................................................................22 2-2.2 製程機台簡介............................................................................................23 2-2.3 晶片製作程序............................................................................................27 2-3 微流體通道 (Microfluidic channel) 的製備.................................................33 第三章 場效應電晶體 (Field-effect Transistor)......................................................34 3-1 場效應電晶體的分類及介紹...........................................................................34 3-1.1場效應電晶體的分類.................................................................................34 3-1.2 MOSFET構造及工作原理........................................................................34 3-2 場效應電晶體的電性傳輸...............................................................................39 3-2.1 元件的電傳導............................................................................................39 3-2.2 歐姆接觸(ohmic cotact)理論....................................................................39 3-3 Nanotube (NT) /Nanowire (NW) FET...............................................................40 3-3.1 發展歷史回顧............................................................................................40 3-3.2 Nanotube (NT) /Nanowire (NW) FET 的製備方式..................................41 3-3.3 Nanotube (NT) /Nanowire (NW) FET的工作原理...................................43 第四章 矽奈米線的合成..........................................................................................45 4-1 前言.................................................................................................................. 45 4-2 化學氣相沉積合成系統.................................................................................. 45 4-2.1 化學氣相沉積 (Chemical Vapor-phase Deposition) 簡介.................... 45 4-3 合成系統的介紹...............................................................................................46 4-4 矽奈米線的Vapor-liquid-solid (V-L-S) 生長機制.........................................50 4-5 矽奈米線的合成流程.......................................................................................52 第五章 實驗結果與討論............................................................................................54 5-1 矽奈米線的合成結果......................................................................................54 5-2 SiNW-FET的電性量測.....................................................................................58 5-2.1 Source-drain current(Isd) vs. source-drain voltage(Vsd)............................58 5-2.2 Source-drain current(Isd) vs. gate voltage(Vg)...........................................61 5-3 SiNW-FET的表面修飾.....................................................................................65 5-3.1 GSH-GST system........................................................................................65 5-3.2 修飾方式與確認........................................................................................67 5-4 GST的偵測與Washing buffer的沖洗效率.......................................................76 第六章 結論與未來展望............................................................................................86 參考文獻......................................................................................................................88

    第一章 參考文獻
    [1] Wilson G. S.; Gifford, R. Biosens. Bioelectron. 2005, 20, 2388.
    [2] Newman, J. D.; Turner, A. P. Biosens. Bioelectron. 2005, 20, 2435.
    [3] Verma, N.; Singh, M. BioMetals 2005, 18, 121.
    [4] Ca r r a r a , S . ; Ri l e y, D. J . ; Bavastrello, V.; Stura, E.; Nicolini, C. Sens. Actuators B 2005, 105, 542.
    [5] Erickson, D.; Li, D. Anal. Chim. Acta 2004, 507, 11.
    [6] Campas, M.; Katakis, I. Trends Anal. Chem. 2004, 23, 49.
    [7] Bakker, E. Anal. Chem. 2004, 76, 3285.
    [8] Morales, A. M.; Lieber, C. M. Science 1998, 279, 208.
    [9] (a) Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Science 2001, 293, 1289.
    (b) http://140.120.11.121/~ysuen/device_phys/indexdevice.htm
    [10] Thomas C. Südhof Annu. Rev. Neurosci. 2004, 27, 509–547.
    [11] (a) Kristian Wadel, Erwin Neher, and Takeshi Sakaba Neuron 2007, 53, 563–575.
    (b)http://www.wormbook.org/chapters/www_synapticfunction/synapticfunction.html
    [12] Yoshimi Takai, Takuya Sasaki, Hiromichi Shirataki and Hiroyuki Nakanishi. Genes to Cells 1996, 1, 615-632.
    [13] Schluter O. M., Khvotchev M., Jahn R., Südhof T. C. J. Biol.Chem. 2002, 277, 40919–40929.
    [14] Yoshimi Takai, Takuya Sasaki, Hiromichi Shirataki and Hiroyuki Nakanishi. Genes to Cells 1996, 1, 615-632.
    [15] Burton J., Roberts D., Montaldi M., Novick P. & De Camilli P. Nature 1993, 361, 464–467.
    [16] Moya M., Roberts D. & Novick P. Nature 1993, 361, 460–463.
    [17] Burstein E. S., Linko-Stentz K., Lu Z. J. & Macara I. G. J. Biol. Chem. 1991, 266, 2689–2692.
    [18] Matsui Y., Kikuchi A., Araki S., et al. Mol. Cell. Biol. 1990, 10, 4116–4122.
    [19] Nishimura N., Nakamura H., Takai Y. & Sano K. J. Biol. Chem. 1994, 269, 14191–14198.
    [20] Shisheva A., Südhof T. C. & Czech M. P. Mol. Cell. Biol. 1994, 14, 3459–3468.
    [21] Shirataki H, Kaibuchi K, Sakoda T, Kishida S,Yamaguchi T, et al. Mol. Cell Biol. 1993, 13, 2061–2068.
    [22] Li C., Takei K., Geppert M., Daniell L., Stenius K.,et al. Neuron 1994, 13, 85–98.
    [23] Wang Y., Okamoto M., Schmitz F., Hofman K., Südhof T. C. Nature 1997, 388, 593–598.
    [24] Wang Y., Sugita S., Südhof T.C. J. Biol. Chem. 2000, 275, 20033–20044.
    [25] Wang Y., Südhof T.C. Genomics 2003, 81, 126–137.
    [26] Geppert M., Bolshakov V. Y., Siegelbaum S. A., Takei K., De Camilli P., et al. Nature 1994, 369, 493–497.
    [27] Ubach J., Zhang X., Shao X., S¨udhof T. C., Rizo J. EMBO J. 1998, 17, 3921–3930.
    [28] Ubach J., Garcia J., Nittler M. P., Südhof T.C., Rizo J. Nature Cell Biol. 1999, 1, 106–112.
    [29] W. L. Coleman, C. A. Bill and M. Bykhovskaia Neuroscience 2007, 148, 1–6.
    [30] Holz R. W., Brondyk W. H., Senter R. A., Kuizon L., Macara I. G. J. Biol. Chem. 1994, 269, 10229–10234.
    [31] Johannes L., Lledo P. M., Roa M., Vincent J. D., Henry J. P., Darchen F. EMBO J. 1994, 13, 2029–2037.
    [32] Lin C. G., Pan C. Y., Kao L. S. Biochem. Biophys. Res. Commun. 1996, 221, 675–681.
    [33] Schluter O. M., Khvotchev M., Jahn R., Südhof T. C. J. Biol. Chem. 2002, 277, 40919–40929.
    [34] Johannes L., Doussau F., Clabecq A., Henry J. P., Darchen F., Poulain B. J. Cell. Sci. 1996, 109, 2875–2884.
    [35] Coppola T., Frantz C., Perret-Menoud V., Gattesco S., Hirling H., Regazzi R. Mol. Biol. Cell. 2002, 13, 1906–1915.
    [36] (a) Ohya T., Sasaki T., Kato M., Takai Y. J. Biol. Chem. 1998, 273, 613–617.
    (b) Anja Watzke, Luc Brunsveld, Thomas Durek, Kirill Alexandrov, Alexey Rak, Roger S. Goody and Herbert Waldmann Org. Biomol. Chem. 2005, 3 , 1157–1164.
    [37] Coppola T., Hirling H., Perret-Menoud V., Gattesco S., Catsicas S., Joberty G., Macara I. G., Regazzi R. J. Cell. Sci. 2001, 114, 1757–1764.
    [38] Bock, J. B., Matern, H. T., Peden, A. A., and Scheller, R.H. Nature 2001, 409, 839–841.
    [39] Jahn, R., and Südhof, T. C. Annu. Rev. Biochem. 1999, 68, 863–911.
    [40] Chen, Y. A., and Scheller, R. H. Nat. Rev. Mol. Cell Biol. 2001, 2, 98–106.
    [41] Rizo J., and Südhof, T. C. Nat. Rev. Neurosci. 2002, 3, 641–653.
    [42] Chapman E. R., Hanson P. I., An S. & Jahn R. J. Biol. Chem. 1995, 270, 23667–23671.

    第三章 參考文獻
    [43] Sze, S. M. Physics of Semiconductor Devices ; Wiley: New York, 1981
    [44] Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).
    [45] S.J. Tans, A.R.M. Verschueren, and C. Dekker Nature, 393, 49-52 (1998).
    [46] (a) R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and P. Avouris, Appl. Phys. Lett. 73, 2447 (1998).
    (b) Yiying Wu and Peidong Yang J. Am. Chem. Soc. 2001, 123, 3165-3166
    [47] F. L. Yang, D. H. Lee, H. Y. Chen, C. Y. Chang, S. D. Liu, and C. C. Huang et al., Tech. Dig. 2004 Symp. VLSI Technol., pp. 196-197.
    [48] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, Nano Letters, vol. 4, pp. 245-247, April 2004.
    [49] Gao, Z.-Q.; Agarwal, A.; Trigg, A. D.; Singh, N.; Fang, C.; Tung, C.-H.; Fan, Y.; Buddharaju, K. D.; Kong, J.-M. Anal. Chem. 2007, 79, 3291.
    [50] Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, Science, vol. 291, pp. 630-633, 2001.
    [51] Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, Nano Letters, vol. 4, pp. 433-436, 2004.
    [52] Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Science 2001, 293, 1289.
    [53] Hahm, J.-I.; Lieber, C. M. Nano Lett. 2004, 4, 51.
    [54] Bunimovich, Y. L.; Shin, Y. S.; Yeo, W.-S.; Amori, M.; Kwong, G.; Heath, J. R. J. Am. Chem. Soc. 2006, 128, 16323.
    [55] Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Nat. Biotechnol. 2005, 23, 1294.
    [56] (a) Patolsky, F.; Zheng, G.; Hayden, O.; Lakadamyali, M.; Zhuang, X.; Lieber, C. M. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 14017.
    (b) Fernando Patolsky, Brian P. Timko, Gengfeng Zheng, and Charles M. Lieber MRS BULLETIN, VOLUME 32, FEBRUARY 2007
    [57] (a) Patolsky, F. et al Science 2006, 313, 1100.
    (b) F. Patolsky, G. Zheng and C.M. Lieber, Nat. Protocols 2006 1, 1711-1724.

    第四章 參考文獻
    [58] Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32, 435-445.
    [59] Prokes, S. M.; Wang, K. L. Mater. Res. Bull. 1999, 24, 13-36.
    [60] Cui Y., Lieber C. M. 2001 Science 291 851.
    [61] Mathur, N. 2002 Nature 419 573.
    [62] Xiao, M. et al 2004 Nature 430 435.
    [63] Morales, A. M.; Lieber, C. M. Science 1998, 279, 208.
    [64] Wagner, R. S. and Ellis, W. C. App. Phys. Lett. 1964, 4, 89.
    [65] Wagner, R. S. and Ellis, W. C. Trans. Met. Soc. AIME 1965, 233, 1053.
    [66] Wagner, R. S. in: Whisker Technology, Ed. Levitt, A. P. pp. 47-119 New York, Wiley-Interscience, 1970.
    [67] Givargizov, E. I. Journal of Crystal Growth 1975, 31, 20-30.
    [68] Hitchman, M. L.; Jensen, K. F. Chemical Vapor Deposition: Principle and Applications, London: Academic Press 1993

    第五章 參考文獻
    [69] Newman C G, O’Neal H E, Ring M A, Leska F and Shipley N 1979 Int. J. Chem. Kinet. 11 1167.
    [70] Briand D, Sarret M, Kis-Sion K, Mohammed-Brahim T and Duverneuil P 1999 Semicond. Sci. Technol. 14 173-80.
    [71] Sarret M, Liba A, LeBihan F, Joubert P and Fortin B 1994 J. Appl. Phys. 76 5492-7.
    [72] Hu S., J. Kim, P. Tarakeshwar & K.S. Kim, 2002. J. Phys. Chem A 106, 6817.
    [73] Perrin J., Y. Takeda & Y. Takeuchi, 1989. Surface. Sci. 210, 114 .
    [74] Rablen P.R. & J.F. Hartwig, 1996. J. Am. Chem. Soc. 118, 4648 .
    [75] Rablen P.R., 1997. J. Am. Chem. Soc. 119, 8350.
    [76] Yang G., P. Bai, B.Y. Tong, S.K. Wong & I. Hill, 1989. Solid State Commun. 72, 159.
    [77] Hitchman M.L. & K.F. Jensen, 1993. Chemical Vapor Deposition: Principle and Application. London: Academic Press.
    [78] T. Hanrath and B. A. Korgel, J. Phys. Chem. B 109, 5518 (2005).
    [79] M. S. Fuhrer, B. M. Kim, T. Dürkop, and T. Brintlinger, Nano Lett. 2, 755 (2002).
    [80] Y. Cui, Z. Zhong, D. Wang, W. U. Wang and C.M. Lieber, Nano Lett. 3, 149-152 (2003).
    [81] K. Bradley, A. Davis, J.-C. P. Gabriel, and G. Grüner, Nano Lett. 5, 841 (2005)
    [82] Y. Cui, X. Duan, J. Hu, and C. M. Lieber, J. Phys. Chem. B 104, 5213 (2000)
    [83] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998).
    [84] W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, and H. Dai, Nano Lett. 3, 193 (2003).
    [85] Shimizu, N.; Sugimoto, K.; Tang, J. W.; Nishi, T.; Sato, I.; Hiramoto, M.; Aizawa, S.; Hatakeyama, M.; Ohba, R.; Hatori, H.; Yoshikawa, T.; Suzuki, F.; Oomori, A.; Tanaka, H.; Kawaguchi, H.; Watanabe, H.; Handa, H. Nature Biotechnology 2000, 18, 877.
    [86] (a) Ji, X. H.; Zhang, P. H.; Armstrong, R. N.; Gilliland, G. L. Biochemistry 1992, 31, 10169.
    (b) Yuri L. Bunimovich, Young Shik Shin, Woon-Seok Yeo, Michael Amori, Gabriel Kwong, and James R. Heath, JACS 128, 16323-16331 (2006)
    (c) Hu, K.; Fan, F.; Bard, A. J.; Hillier, A. C. J. Phys. Chem. B 1997, 101,8298.
    (d) Zhuravlev L. T. Colloidal surfaces. 2000, 173, 1-45.
    [87] (a) G. Grüner, Anal. Bioanal. Chem. 384, 322 (2006).
    (b) Guo-Jun Zhang, Gang Zhang, Jay Huiyi Chua, Ru-Ern Chee, Ee Hua Wong, Ajay Agarwal, Kavitha D. Buddharaju, Navab Singh, Zhiqiang Gao, N. Balasubramanian Nano Lett., 2008 Vol. 8, No. 4
    [88] 1366 Bull. Korean Chem. Soc. 2004, Vol. 25, No. 9

    無法下載圖示 本全文未授權公開
    QR CODE