研究生: |
謝宗均 Hsieh, Tsung-Chun |
---|---|
論文名稱: |
氧化釓鋅薄膜在不同鍍膜氧壓下的結構、光學與磁性 Structural, Optical, and Magnetic Properties of Zinc Gadolinium Oxide Thin Films Deposited under Different Oxygen Partial Pressure |
指導教授: |
駱芳鈺
Lo, Fang-Yuh |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 稀磁性半導體 、氧化鋅 、釓 、脈衝雷射蒸鍍法 |
英文關鍵詞: | DMS, ZnO, Gd, pulsed-laser deposition |
論文種類: | 學術論文 |
相關次數: | 點閱:161 下載:12 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以脈衝雷射蒸鍍法在c指向單晶藍寶石基板上製備150nm厚的ZnGdO薄膜,並探討薄膜鍍膜速率、薄膜的結構特性、光學性質及磁性與鍍膜氧壓的關係,其中單位面積雷射能量為2.6 J/cm2,鍍膜氧壓分別為0.3與0.08 mbar,Gd摻雜的原子比例為0~20 %,基板溫度為700℃。
ZnGdO薄膜鍍膜速率會隨著Gd比例的增加而上升,且在高氧壓(0.3 mbar)環境下製備的薄膜其鍍膜速率高於低氧壓(0.08 mbar)製備的薄膜。藉由X光光電子能譜測定的Gd摻雜比例皆略大於配方比例。X光繞射及拉曼散射光譜顯示所有薄膜皆無雜質或其他晶相產生,代表Gd成功取代Zn的位置。Gd比例增加時,c軸晶格常數先減少後增加,粒徑大小則持續下降,代表薄膜結晶品質變差。當Gd比例高於5%時,高氧壓製備的薄膜之結晶品質較低氧壓製備的薄膜差。光致螢光光譜顯示所有薄膜中都存在鋅空缺與鋅間隙,而在純氧化鋅中還有氧空缺。橢圓偏振儀測定的薄膜直接能隙隨著Gd比例的上升而增加。超導量子干涉磁量儀測定結果顯示所有純氧化鋅薄膜皆為超順磁性,氧化釓鋅薄膜皆為順磁性。在低溫下,高氧壓製備的薄膜其最大磁矩大於低氧壓製備的薄膜。
Pulsed-laser deposition(PLD) was applied to grow 150nm thick gadolinium(Gd)-
doped ZnO(Gd:ZnO) thin films on c-sapphire substrate under two different oxygen partial pressures of 0.08 and 0.3 mbar. The Gd concentration ranges from 0 to 20 at.%, temperature of substrate is 700 degree Celsius, and laser fluence is 2.6 J/cm2. The relations bewteen oxygen partial pressure and deposition rate, structural properties, optical properties and magnetic properties of Gd:ZnO thin films were investigated in this study.
Deposition rate of Gd:ZnO thin films were increase as Gd concentration increasing for both oxygen partial pressures, and the thin films grown under 0.3 mbar had higher deposition rate. Gd concentrations determined by the X-ray photoelectron spectroscopy(XPS) were slightly larger than the nominal concentration. X-ray diffraction(XRD) and Raman-scattering spectra revealed Gd incorporation into ZnO without secondary phase. As Gd density increased, the grain size of Gd:ZnO thin films decreased monotonically, while the c-lattice constant first decreased till 5 % of Gd doping and then increased monotonically. The thin films which grown under 0.08 mbar and Gd concentration larger than 5% have better crystal qualities. Photoluminescence(PL) spectroscopy showed that all the thin films had zinc interstitials and zinc vacancies. In addition, pure ZnO thin films had oxygen vacancies. From ellipsometry, the direct band gap of Gd-doped ZnO thin films was found to increase with increasing Gd concentration. Magnetic investigations with a superconducting quantum interference device(SQUID) magnetometer showed superparamagnetism for pure ZnO thin films and paramagnetism for all Gd-doped ZnO thin films. At T = 5K, the thin films which grown under 0.3 mbar have lager magnetic moment at = 40 kOe.
[1]胡裕民(2004)。物理雙月刊。26卷4期,587-599頁。
[2]駱芳鈺(2009)。臺灣磁性技術協會會訊。50期,20-30頁。
[3]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science. 287, 1019 (2000).
[4]A.P. Rambu, V. Nica and M. Dobromir, Superlattices Microstruct. 59, 87 (2013).
[5]N. Gopalakrishnan, L. Balakrishnan, A. Brindha, and G. Jayalakshmi, Cryst. Res. Technol. 47, No.1 , 45 (2012).
[6]V.K. Sharma, M.Najim, A.K.Srivastava, and G.D.Varma, J. Magn. Magn. Mater. 324, 683 (2012).
[7] Li Li, Y. Guo, X. Y. Cui, Rongkun Zheng, K. Ohtani, C. Kong, A. V. Ceguerra, M. P. Moody, J. D. Ye, H. H. Tan, C. Jagadish, Hui Liu, C. Stampfl, H. Ohno, S. P. Ringer, and F. Matsukura, Phys. Rev. B 85, 174430 (2012).
[8]Kenan Bulcar, Mustafa Akyol, Gönül Akca, Ali Osman Ayaş¸ Mustafa Topaksu and Ahmet Ekicibil, J. Supercond. Nov. Magn. 27, 2631 (2014).
[9]Surender Kumar and P.D. Sahare, Mater. Res. Bull. 51, 217 (2014).
[10]A. A. Dakhel and M. El-Hilo, J. Appl. Phys. 107, 123905 (2010).
[11]M. Subramanian, P. Thakur, M. Tanemura, T. Hihara, V. Ganesan, T. Soga, K. H. Chae, R. Jayavel, and T. Jimbo, J. Appl. Phys. 108, 053904 (2010).
[12]V. Ney, S. Ye, T. Kammermeier, K. Ollefs, F. Wilhelm, A. Rogalev, S. Lebègue, A. L. da Rosa, and A. Ney, Phys. Rev. B 85, 235203 (2012).
[13]S. T. Lim, W. D. Song, K. L. Teo, T. Liew and T. C. Chong, Int. J. Mod. Phys. B 23, No. 17, 3550 (2009).
[14]V. Ney, S. Ye, T. Kammermeier, A. Ney, H. Zhou, J. Fallert, H. Kalt, F.-Y. Lo, A. Melnikov, and A. D. Wieck, J. Appl. Phys. 104, 083904 (2008).
[15]K. Potzger, Shengqiang Zhou, F. Eichhorn, M. Helm, W. Skorupa, A. Mücklich, and J. Fassbender, J. Appl. Phys. 99, 063906 (2006).
[16]P. P. Murmu, J. Kennedy, B. J. Ruck, G. V. M. Williams, A. Markwitz, S. Rubanov, A. A. Suvorova, J. Mater. Sci. 47, 1119 (2012).
[17]密修誌(2013)。脈衝雷射蒸鍍法製備氧化釓鋅薄膜的探討:結構、光學與磁性研究(碩士論文)。國立臺灣師範大學。
[18] Dr. Klaus Ellmer, Dr. Andreas Klein and Professor Dr. Bernd Rech (2008). Transparent Conductive Zinc Oxide.
[19]Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
[20]簡志峰(2011)。脈衝雷射蒸鍍法蒸鍍氧化鋅及氧化釓鋅薄膜(碩士論文)。國立台灣師範大學。
[21]魏嘉瑩(2009)。釓摻雜氧化鋅鋁透明導電薄膜特性分析(碩士論文)。國立中央大學。
[22]Stephen Blundell (2001). Magnetism in Condensed Matter.
[23]丁一介(2014)。脈衝雷射蒸鍍法製備氧化鏑鋅薄膜的探討:結構、光學與磁性研究(碩士論文)。國立台灣師範大學。
[24]黃英碩(2005)。掃描探針顯微術的原理及應用。科儀新知,144期,7-17頁。
[25]David J. Griffiths (2008). Introduction to Electrodynamics(third edition).
[26]Raymond A. Serway, Clement J. Moses and Curt A. Moyer (2005). Modern Physics(third edition).
[27]B. D. Cullity and S. R. Stock(2001). Elements of X-Ray Diffraction(third edition).
[28]Paul van der Heide (2011). X-ray Photoelectron Spectroscopy: An introduction to Principles and Practices.
[29]張立信(2012)。表面化學分析技術。奈米通訊,19卷4期,17-23頁。
[30]Sieglinde Marie Lousie Pfaendler, Giorgio Ercolano, Judith L. MacManus-Driscoll and Andrew J. Flewitt, ECS Trans. 50, No. 8,73 (2013).
[31]蔡承佑(2014)。脈衝雷射蒸鍍法製備氧化鈥鋅薄膜的探討:結構、光學與磁性研究(碩士論文)。國立台灣師範大學。
[32]J.C. Fan, K.M. Sreekanth, Z. Xie, S.L. Chang and K.V. Rao, Prog. Mater. Sci. 58, 874 (2013).
[33]Bixia Lin, Zhuxi Fu, and Yunbo Jia, Appl. Phys. Lett. 79, 943 (2001).
[34]Magnus Willander, Omer Nur, Jamil Rana Sadaf, Muhammad Israr Qadir, Saima Zaman, Ahmed Zainelabdin, Nargis Bano and Ijaz Hussain, Materials. 3, 2643 (2010).
[35]Eugene Hecht (2002). Optics(fourth edition).
[36]謝宜暾(2006)。氧化鋅摻雜銅及鎳之物性研究(碩士論文)。國立臺南大學。
[37]Hadis Morkoç and Ümit Özgür (2009).Zinc Oxide - Fundamentals, Materials and Device Technology.
[38]Jinqiu Yu, Lei Cui, Huaqiang He, Shihong Yan, Yunsheng Hu and Hao Wu, J. RARE EARTH. 32, 1 (2014).
[39]David Halliday and Robert Resnick (2008). Fundamentals of Physics Extended(eighth edition).
[40]莊桓嘉(2014)。氧化鈥鋅/氧化鋅雙層膜結構之物性研究(碩士論文)。國立臺灣師範大學。
[41]Charles Kittel (2005). Introduction to Solid State Physics(eighth edition).
[42]Harold P. Klug and Leroy E. Alexander (1974). X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials(second edition).
[43]黃承德(2012)。離子佈植與摻雜對氮化鎵和氧化鋅薄膜光譜性質之影響(碩士論文)。國立臺灣師範大學。
[44]Changyong Lan, Boning Lin, Yuwen Jiang, Chun Li, Mater. Lett. 132, 116 (2014).