簡易檢索 / 詳目顯示

研究生: 李鎧麟
Lee, Kai-Lin
論文名稱: 人工蜂群演算法應用於三電力電動車系統之最佳能量管理
Integrated Optimal Energy Management Strategy Using Artificial Bee Colony Algorithm for a Three-Energy-Source Hybrid Powertrain
指導教授: 洪翊軒
Hung, Yi-Hsuan
呂有豐
Lue, Yeou-Feng
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 76
中文關鍵詞: 人工蜂群演算法規則庫管理最小等效能耗策略混合電力
英文關鍵詞: artificial bee colony algorithm, rule-based management, equivalent consumption minimization strategy, hybrid power
DOI URL: http://doi.org/10.6345/THE.NTNU.DIE.034.2018.E01
論文種類: 學術論文
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在開發人工蜂群演算法(Artificial Bee Colony Algorithm, ABC)用於三電力電動車輛的能量管理系統,並且應用硬體嵌入式系統(Hardware-in-the-loop, HIL)進行即時(Real-time)驗證驗算法之可行性。使用HIL進行評估並以人工蜂群演算法(ABC)之三電力電動車輛的能量管理系統策略控制。車輛子系統包括110 kW燃料電池、192 kW馬達、32 kW超級電容和50 kW-h鋰電池,車重1,370 kg。在能量管理系統ABC控制中,主要有三個步驟(1)工蜂階段、(2)觀察蜂階段、(3)偵察蜂階段。總疊代次數為30次,共有50隻工蜂進行最佳能量管理。
    ABC與兩種控制策略進行NEDC與FTP-72行車型態之油耗比較:(1)規則庫管理(Rule base):有四種控制模式(純鋰電模式、混合電力模式、延距模式及超級電容輔助模式),根據經驗設定模式切換時機;(2)最小等效能耗策略(Equivalent Consumption Minimization Strategy, ECMS):搭配全域搜尋(Global Search Algorithm, GSA)將範圍內所有的可能解進行尋找,找出最小耗氫之電力分配比。最後透過HIL模擬ABC於車輛控制單元(Vehicle Control Unit, VCU) 即時模擬之可行性與油耗效益驗證。基本規則庫、ECMS、ABC及Real-time,這四種情狀況在NEDC的等效耗氫分別為:[1177 g、667g、665.7 g、375.3 g],FTP-72等效耗氫分別為:[1402 g、808.7 g、806.6 g、429.2 g]。其中,ECMS、ABC、Real-time三種狀況與基本規則庫相較下NEDC的能耗改善分別為[43.3 %、43.4 %、68.1 %],FTP-72下運行之能耗改善分別為[42.3 %、42.5 %、69.4 %]。;ABC與Real-time兩者在兩個行車型態中總耗氫量改善度有高達99.7%的相似度,皆僅次於ECMS最佳解。未來將可實施於真實之三電力源複合電能車輛。

    The purpose of this study is to develop the artificial bee colony algorithm (ABC) by applying it to the energy management strategy system of a three-energy-source hybrid powertrain. Furthermore, this study was practical in nature, as it used the real-time simulation Hardware-in-the-Loop (HIL) to verify the algorithm’s feasibility. This study employs HIL to assess the influence that using ABC will have on the energy management strategy control of a three-energy-source hybrid powertrain. The vehicle weighs 1,370 kilograms and its subsystems include a 110kW fuel cell, 192kW motor, 32kW supercapacitor, and a 50kW-h lithium battery. There are three primary steps for the energy management system and ABC energy management control: 1) employee bee phase, 2) onlooker bee phase, and 3) scout bee phase. The overall number of iterations was 30, and 50 bees were used carry out optimal energy management.
    ABC and two control strategies were used to carry out a comparison of fuel consumption with the NEDC (New European Driving Cycle) and FTP-72 (Federal Testing Procedure) driving pattern. 1) Rule-based management: There are five control modes, which are system preparation, battery charging mode, electric mode, hybrid power mode, and extended range mode; the engineer used his experience to determine when to set and change modes. 2) Equivalent consumption minimization strategy (ECMS): By incorporating the global search algorithm (GSA), we searched for all the scope’s possibilities in order to find the most minimal fuel consumption for power distribution ratio strategy. At the end of the study, we used HIL to simulate the feasibility and verify fuel consumption benefits of ABC on vehicle control units (VCU) in real time. A basic rule base, ECMS, ABC, and real-time were the four conditions for the equivalent consumption with the NEDC driving pattern: 1177g, 667g, 665.7g, and 375.3g were their respective values. The equivalent consumption values with a FTP-72 driving cycle were 1402g, 808.7g, 806.6g, and 429.2g. ECMS, ABC, and real-time were compared with a basic rule base when using a NEDC driving pattern to determine percentage values for improvement in energy consumption: 43.3%, 43.4%, and 68.1%. Percentage values for improvement in energy consumption for a FTP-72 driving cycle were 42.3%, 42.5%, and 69.4%. The improvement in equivalent hydrogen consumption values for ABC and real-time for the NEDC driving pattern and FTP-72 driving cycle were 99.7% similar, and they were only outperformed by ECMS, which was the optimal solution. In the future, this experiment will be used to test a three-energy-source hybrid-powered vehicle.

    摘要 i Abstract ii 目 次 iv 表 次 vi 圖 次 vii 第 一 章 緒論 1 1.1 引言 1 1.2 研究動機 3 1.3 研究目的 7 1.4 研究方法 9 1.5 文獻回顧 11 1.6 論文架構 14 第 二 章 系統架構與動態模型 17 2.1 系統架構 17 2.1.1 整車架構圖 18 2.2 行車型態模塊 20 2.3 駕駛者模塊 21 2.4 高功率電動馬達 22 2.5 燃料電池模組 23 2.6 鋰電池模組 24 2.7 超級電容模組 25 2.8 變速系統 27 2.9 車輛動能模型 27 2.10 硬體嵌入式系統架構 28 2.10.1 Real -time模型 28 2.10.2 快速雛型控制器 30 2.10.3 硬體嵌入式系統(HIL) 31 第 三 章 能量管理策略 35 3.1 混合電力車模式介紹 35 3.2 基本規則庫控制策略 37 3.3 最小等效能耗法控制策略 39 3.4 人工蜂群演算法之多變數控制 42 3.4.1 優化控制之控制變數和動力分配比關係 42 3.4.2 人工蜂群演算法步驟介紹 42 3.4.3 人工蜂群演算法各項參數 45 3.4.4 人工蜂群演算法流程圖 46 第 四 章 模擬結果與討論 49 4.1 基本性能結果 49 4.2 各策略車速追蹤結果 50 4.3 控制策略動力分配比結果 53 4.4 能耗比較結果 58 第五章 結論與未來工作 63 5.1 結論 63 5.2 未來工作與建議 65 參考文獻 67 符號彙整 75

    [1] Bp plc, BP Statistical Review of World Energy, UK: British Petroleum, 2017.
    [2] S. G. Osborn, et al. “Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing,” in Proceedings of the National Academy of Sciences USA, vol. 108, no. 20, pp. 8172–8176, May 17, 2010.
    [3] C. Mooney, “The truth about fracking,” Scientific American, pp.80-85, Nov, 2011.
    [4] R. K. Pachauri, M. R. Allen, V. R. Barros, J. Broome, et al, “Climate change 2014 synthesis report,” Intergovernmental Panel on Climate Change, vol. 5, 2015.
    [5] 李永展,永續發展: 大地反撲的省思,2003。
    [6] 曹俊漢,“全球治理與氣候變遷:評估哥本哈根會議(COP15)決策機制的衝擊與對策”,歐美研究,89-148頁,第43卷,第一期,2003。
    [7] 李河清、李元薇,“氣候變遷調適與人類移動:對 COP21 與《巴黎協定》的反思”,台灣人權學刊,27-42頁,第三卷,第三期,2016。
    [8] E. Morganti and M. Browne, “Technical and operational obstacles to the adoption of electric vans in France and the UK: An operator perspective”, Transport Policy, vol. 63, pp. 90-97, 2018.
    [9] D. Sperling, “Electric vehicles: Approaching the tripping point”, Bulletin of the Atomic Scientists, vol. 74, pp. 11-18, 2018.
    [10] 立法院,能源政策專案報告,立法院第9屆第5會期,2018。
    [11] 鄭勝文,“電動車輛專輯”,機械月刊,第25卷,第8期,1999。
    [12] P. Patel, “Cobalt blues: A shortage of the metal could create a bottleneck for electric vehicles”, Scientific American, pp. 21, Jan, 2018.
    [13] “Global EV Outlook 2017”, International Energy Agency, Jun, 2017.
    [14] J. P. Ribau, C. M. Silva, and J. M.C. Sousa, “Efficiency, cost and life cycle CO2 optimization of fuel cell hybrid and plug-in hybrid urban buses,” Applied Energy, vol. 129, pp. 320-335, 2014.
    [15] 經濟部能源局。取自http://www.tier.org.tw/energymonthly/
    [16] C. T. Chung and Y. H. Hung, “Energy improvement and performance evaluation of a novel full hybrid electric motorcycle with power split e-CVT,” Energy Conversion and Management, vol. 86, pp. 216-225, 2014.
    [17] K. B. Sheu, “Analysis and evaluation of hybrid scooter transmission systems,” Applied Energy, vol. 84, no. 12, pp. 1289-1304, 2007.
    [18] K. B. Sheu, “Conceptual design of hybrid scooter transmissions with planetary gear-trains,” Applied Energy, vol. 84(5), pp. 526-541, 2007.
    [19] K. B. Sheu and T. H. Hsu, “Design and implementation of a novel hybrid-electric-motorcycle transmission,” Applied Energy, vol. 83, no. 9, pp. 959-974, 2006.
    [20] M. Sadeghi, R.T. Moghaddam, and R. Babazadeh, “An efficient artificial bee colony algorithm for a P-HUB covering location problem with travel time reliability,” International Journal of Industrial Engineering, vol. 25, no. 1, pp. 40-53, 2018.
    [21] G. Yan and C. Li, “An effective refinement artificial bee colony optimization algorithm based on chaotic search and application for PID control tuning,” Journal of Computational Information Systems, vol. 7, no. 9, 2011
    [22] K. S. Gallagher and E. Muehlegger, “Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology,” J. of Environmental Economics and Management, vol. 61, pp. 1-15, 2011.
    [23] S. M. Lukic and A. Emadi, “Effects of drivetrain hybridization on fuel economy and dynamic performance of parallel hybrid electric vehicles,” IEEE Trans. Veh. Tech., vol. 53, no. 2, pp. 385-389, 2004.
    [24] B. Thoben and A. Siebke, “Influence of different gas diffusion layers on the water management of the PEFC cathode,” Journal of Electrochem, vol. 7, pp. 13-20, 2004.
    [25] Z. Y. Chen, R. Xiong, and J.Y. Cao, “Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions,” Energy, vol. 96, pp. 197-208 ,2016.
    [26] M. Sorrentino, G. Rizzo, and I. Arsie, “Analysis of a rule-based control strategy for onboard energy management of series hybrid vehicles,” Control Eng. Pract., vol. 19, pp. 1433-1441, 2011.
    [27] B. C. Chen, Y. Y. Wu, and H. C. Tsai, “Design and analysis of power management strategy for range extended electric vehicle using dynamic programming,” Appl. Energy, vol.113, pp.1764-1774, 2014.
    [28] S. Y. Chen, Y. H. Hung, C. H. Wu, and S. T. Huang, “Optimal energy management of a hybrid electric powertrain system using improved particle swarm optimization,” Applied Energy, vol.160, pp. 132-145, 2015.
    [29] K. M. Passino, “Biomimicry of bacterial foraging for distributed optimization and control,” IEEE Control System Magazine, vol. 22, no. 3, pp. 52-67, 2002.
    [30] A. M. Kassem, A. Y. Abdelaziz, “BFA optimization for voltage and frequency control of a stand-alone wind generation unit,” Electrical Engineering, vol.7, no. 4, pp.313-325, 2015.
    [31] J.L. Torres, R. Gonzalez, A. Gimenez, and L. Lopez, “Energy management strategy for plug-in hybrid electric vehicles. A comparative study,” Appl. Energy., vol. 113, pp. 816-24, 2014.
    [32] N.J. Schouten, M.A. Salmanb, and N.A. Kheir, “Energy management strategies for parallel hybrid vehicles using fuzzy logic,” Control Engineering Practice., vol. 11, pp. 171–7, 2003.
    [33] B.C. Chen, Y.Y. Wu, and H.C. Tsai, “Design and analysis of power management strategy for range extended electric vehicle using dynamic programming,” Appl. Energy., vol. 113, pp. 1764-74, 2014.
    [34] Z. Yuan, L. Teng, S. Fengchun, and H. Peng, “Comparative study of dynamic programming and Pontryagin’s minimum principle on energy management for a parallel hybrid electric vehicle,” Energy., vol. 6, no. 4, pp. 2305-2318, 2013.
    [35] M. Montazeri-Gh, A. Poursamad, and B. Ghalichi, “Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles,” Journal of the Franklin Institute., vol. 343, pp. 420–35, 2006.
    [36] J. Liu and H. Peng, “Modeling and control of a power-split hybrid vehicle,” IEEE Trans Control Syst Tech., vol. 16, pp. 1242-1251, 2008.
    [37] G. Paganelli, Y. Guezennec, and G. Rizzoni, “Optimizing control strategy for hybrid fuel cell vehicle,” SAE Paper., no. 2002-01-0102, 2002.
    [38] S.J. Moura, H.K. Fathy, D.S. Callaway, and J.L. Stein, “A stochastic optimal control approach for power management in plug-in hybrid electric vehicles,” IEEE Trans Control Syst Tech., vol. 19, no.3, pp. 545-555, 2011.
    [39] J. Kennedy, “Particle swarm optimization,” Proc IEEE Int Neural Netw Conf., Perth, WA, Australia, Dec. 1995, pp. 1942-1958.
    [40] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans Evol Comput., vol. 6, pp. 58-73, 2002.
    [41] MathWorks, from https://www.mathworks.com/matlabcentral/fileexchan
    ge/35801-evolution-strategies--es-, 2012.
    [42] J.B. Oliveira, J. Boaventura-Cunha, P.M. Oliveira, and H. Freire, “A swarm intelligence-based tuning method for the sliding mode generalized predictive contro”, ISA Trans., vol. 53, pp. 1501-1515, 2014.
    [43] A. Alfi and H. Modares, “System identification and control using adaptive particle swarm optimization,” Appl. Math Model., vol. 35, pp. 1210-1221, 2011.
    [44] F.J. Lin, S. Y. Chen, L. T. Teng, and H. Chu, “Recurrent functional-link-based fuzzy neural network controller with improved particle swarm optimization for a linear synchronous motor drive,” IEEE Trans Magn., vol. 45, pp. 3151-3165, 2009.
    [45] S. Guo, C. Dang, and X. Liao, “Joint opportunistic power and rate allocation for wireless ad hoc networks: an adaptive particle swarm optimization approach,” J. Netw Comput Appl., vol. 34, pp. 1353-1365, 2011.
    [46] Y.Y. Hong, F.J. Lin, S.Y. Chen, Y.C. Lin, and F.Y. Hsu, “A novel adaptive elite-based particle swarm optimization applied to VAR optimization in electric power systems,” Math Probl Eng., vol. 2014, pp. 14, 2014.
    [47] S.Y. Chen, Y.H. Hung, and C.H. Wu. “An integrated optimal energy management/gear-shifting strategy for an electric continuously variable transmission hybrid powertrain using bacterial foraging algorithm,” Mathematical Problems in Engineering., vol. 2016, pp. 15, 2016.
    [48] P.L. Shih, Y.H Hung, S.Y. Chen, and C.H. Wu, “Bacterial foraging algorithm for the optimal on-line energy management of a three-power-source hybrid powertrain,” International Conference on Innovation Communication and Engineering., Xi’an, China, 2016, pp.130.
    [49] 李維平、李元傑、謝明勳,“以群中心茦略改良人工人工蜂群演算法”,資訊管理學報,25-44頁,第二十一卷,第一期,2014。
    [50] M. Zhang, Y.T. Tan, J.H. Zhu, et al, “Modeling and simulation of improved artificial bee colony algorithm with data-driven optimization,” Simulation Modelling Practice and Theory, 2018.
    [51] D. Ramaswamy, R. McGee, S. Sivashankar, A. Deshpande, J. Allen, K. Rzemien, and W. Stuart, “A case study in hardware-in-the-loop testing: Development of an ECU for a hybrid electric vehicle,” SAE Technical Paper., no. 2004-01-0303, 2004.
    [52] H. K. Fathy, Z. S. Filipi, J. Hagena, and J. L. Stein, “Review of hardware-in-the-loop simulation and its prospects in the automotive area. In Defense and Security Symposium,” International Society for Optics and Photonics, pp. 62280E-62280E, 2006.
    [53] 廖伯霖,“電動車之多電源系統建模與最佳化能量管理暨模式切換時機效益評估”,國立臺灣師範大學,碩士論文,2015。
    [54] P.L. Shih, Y.H. Hung, S.Y. Chen, and C.H. Wu, “Bacterial foraging algorithm for the optimum on-line energy management of a three-power-source hybrid powertrain,” Journal of Environmental Protection and Ecology, vol. 18, no. 3, pp. 1169-1178, 2017.
    [55] Y.H. Hung, Y.M. Tung and C.H. Chang, “Optimal control of integrated energy management/mode switch timing in a three-power-source hybrid powertrain,” Applied Energy, vol. 173, pp. 184-196, 2016.
    [56] S.Y. Chen, Y.H. Hung and C.H. Wu, “An integrated optimal energy management/gear-shifting strategy for an electric continuously variable transmission hybrid powertrain using bacterial foraging algorithm,” Mathematical Problems in Engineering, vol. 2016, pp. 15, 2016.
    [57] S.Y. Chen, Y.H. Hung, C.H. Wu, and S. T. Huang , “Optimal energy management of a hybrid electric powertrain system using improved particle swarm optimization,” Applied Energy, vol. 160, pp. 132-145, 2015.
    [58] Y.H. Hung and C.H. Wu, “An integrated optimization approach for a hybrid energy system in electric vehicles,” Applied Energy, vol. 98, pp. 479-490, 2012.
    [59] P. Pisu and G. Rizzoni, “A comparative study of supervisory control strategies for hybrid electric vehicles,” IEEE Transactions on Control Systems Technology, vol. 15, no. 3, pp. 506-518, 2007.
    [60] L.F. Xu, J.Q. Li, J.F. Hua, X. J. Li, and M. G. Ouyang, “Optimal vehicle control strategy of a fuel cell/battery hybrid city bus,” International Journal of Hydrogen Energy, vol. 34, no. 17, pp. 7323-7333, 2009.

    無法下載圖示 本全文未授權公開
    QR CODE