研究生: |
王盈珺 Wang, Ying-Chun |
---|---|
論文名稱: |
運用不同類型擴增實境於不同教材之成效分析 The effect of using different type of augmented reality on different type of materials |
指導教授: |
張國恩
Chang, Kuo-En 宋曜廷 Sung, Yao-Ting 劉子鍵 Liu, Tzu-Chien |
學位類別: |
碩士 Master |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 擴增實境 、形式原則 |
英文關鍵詞: | Augmented Reality, Modality Principle |
DOI URL: | http://doi.org/10.6345/THE.NTNU.GICE.011.2018.F02 |
論文種類: | 學術論文 |
相關次數: | 點閱:302 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究基於多媒體學習認知理論探討在不同教材中使用不同類型擴增實境對於學習的影響。運用形式原則,使用聽覺型擴增實境及視覺型擴增實境在概念性教材及技能性教材中對於學習者之學習成效、認知負荷及神馳經驗。
根據研究結果顯示,在概念性教材及技能性教材中使用聽覺型擴增實境及視覺型擴增實境各組學習成效、認知負荷及神馳經驗沒有顯著差異,但對學習有正面影響。在概念性教材,對於高低分組學生有趨近顯著。使用聽覺型擴增實境及視覺型擴增實境各組在系統滿意度上,皆具有良好的系統使用及接受態度。在研究限制方面本研究受到教材選用及參與研究之學習者學習態度影響其研究結果。
This study explores the impact of different types of augmented reality on learning in different teaching material based on the cognitive theory of multimedia learning. Using modality principles, the auditory augmented reality and visual augmented reality on the conceptual material and skill material for learners' learning performance, cognitive load and flow experience.
According to the research results, there is no significant difference in learning effectiveness, cognitive load and flow experience in the use of auditory augmented reality and visual augmented reality in conceptual material and skill material, but it has a positive impact on learning. In conceptual material, there are approaching significant difference between high and low group students. All groups using auditory augmented reality and visual augmented reality have good experience and a positive learning attitudes in system satisfaction. In terms of research limitations, the study's learning attitudes influenced by the selection of teaching material and participation in the study influenced the results of the study.
Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385.
Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE computer graphics and applications, 21(6), 34-47.
Akçayır, M., Akçayır, G., Pektaş, H. M., & Ocak, M. A. (2016). Augmented reality in science laboratories: The effects of augmented reality on university students’ laboratory skills and attitudes toward science laboratories. Computers in Human Behavior, 57, 334-342.
Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.
Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and instruction, 8(4), 293-332.
Chang, K. E., Chang, C. T., Hou, H. T., Sung, Y. T., Chao, H. L., & Lee, C. M. (2014). Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum.Computers & Education, 71, 185-197.
Dunleavy, M., Dede, C., & Mitchell, R. (2009). Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. Journal of Science Education and Technology, 18(1), 7-22.
Klopfer, E., & Squire, K. (2008). Environmental Detectives—the development of an augmented reality platform for environmental simulations. Educational Technology Research and Development, 56(2), 203-228.
Leppink, J., Paas, F., Van der Vleuten, C. P., Van Gog, T., & Van Merriënboer, J. J. (2013). Development of an instrument for measuring different types of cognitive load. Behavior research methods, 45(4), 1058-1072.
Liou, H.-H., Yang, S. J. H., Chen, S. Y., & Tarng, W. (2017). The Influences of the 2D Image-Based Augmented Reality and Virtual Reality on Student Learning. Educational Technology & Society, 20 (3), 110–121.
Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions?. Educational psychologist, 32(1), 1-19.
Mayer, R. E. (2001). Multimedia learning.
Mayer, R. E. (2009). Multimedia learning (2nd).
Mayer, R. E., Dow, G. T., & Mayer, S. (2003). Multimedia learning in an interactive self-explaining environment: What works in the design of agent-based microworlds?. Journal of educational psychology, 95(4), 806.
Mayer, R. E., & Moreno, R. (2010). Techniques that reduce extraneous cognitive load and manage intrinsic cognitive load during multimedia learning. Cognitive load theory, 132.
Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329.
Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: The role of modality and contiguity. Journal of educational psychology, 91(2), 358.
McCall, R., Wetzel, R., Löschner, J., & Braun, A. K. (2011). Using presence to evaluate an augmented reality location aware game. Personal and Ubiquitous Computing, 15(1), 25-35.
Mihalca, L., Salden, R. J., Corbalan, G., Paas, F., & Miclea, M. (2011). Effectiveness of cognitive-load based adaptive instruction in genetics education. Computers in Human Behavior, 27(1), 82-88.
Olsson, T., Kärkkäinen, T., Lagerstam, E., & Ventä-Olkkonen, L. (2012). User evaluation of mobile augmented reality scenarios. Journal of Ambient Intelligence and Smart Environments, 4(1), 29-47.
Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology/Revue canadienne de psychologie, 45(3), 255.
Sweller, J. (2011). Cognitive load theory. In Psychology of learning and motivation (Vol. 55, pp. 37-76). Academic Press.
Santos, M. E. C., Ty, J. F., Lübke, A., Rodrigo, M. M. T., Taketomi, T., Yamamoto, G., Sandor, C., Kato, H. (2014d). Authoring augmented reality as situated multimedia. In Proceedings of APSCE 22nd International Conference on Computers in Education, pp. 554–556.
Sommerauer, P., & Müller, O. (2014). Augmented reality in informal learning environments: A field experiment in a mathematics exhibition. Computers & Education, 79, 59-68.
Tabbers, H. K., Martens, R. L., & Merriënboer, J. J. (2004). Multimedia instructions and cognitive load theory: Effects of modality and cueing. British Journal of Educational Psychology, 74(1), 71-81.
Wu, H. K., Lee, S. W. Y., Chang, H. Y., & Liang, J. C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & education, 62, 41-49.
Westerfield, G., Mitrovic, A., & Billinghurst, M. (2015). Intelligent augmented reality training for motherboard assembly. International Journal of Artificial Intelligence in Education, 25(1), 157-172.
Wu, P. H., Hwang, G. J., Yang, M. L., & Chen, C. H. (2018). Impacts of integrating the repertory grid into an augmented reality-based learning design on students’ learning achievements, cognitive load and degree of satisfaction. Interactive Learning Environments, 26(2), 221-234.
Yim, H. B., & Seong, P. H. (2010). Heuristic guidelines and experimental evaluation of effective augmented-reality based instructions for maintenance in nuclear power plants. Nuclear engineering and design, 240(12), 4096-4102.
Zhang, J., Sung, Y. T., & Chang, K. E. (2011, October). Using a mobile digital armillary sphere (MDAS) in astronomical observation for primary school students. In E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education (pp. 2632-2641). Association for the Advancement of Computing in Education (AACE).
Zhang, J., Sung, Y. T., Hou, H. T., & Chang, K. E. (2014). The development and evaluation of an augmented reality-based armillary sphere for astronomical observation instruction. Computers & Education, 73, 178-188.
Zhang, J., Hou, H. T., & Chang, K. E. (2014, August). UARE: Using reality-virtually-reality (RVR) models to construct Ubiquitous AR environment for e-Learning context. In Science and Information Conference (SAI), 2014 (pp. 1007-1010). IEEE.