研究生: |
黎源弘 Li, Yuan Hung |
---|---|
論文名稱: |
氧化釓鋅薄膜的法拉第磁光光譜 Megneto-optical Faraday Spectra of Gd-doped ZnO Thin Film |
指導教授: |
駱芳鈺
Lo, Fang-Yuh |
口試委員: | 陳穎叡 洪振湧 |
口試日期: | 2020/07/27 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 35 |
中文關鍵詞: | 法拉第效應 、光致螢光 、稀磁性半導體 、氧化鋅 、釓 |
英文關鍵詞: | Faraday effect, Photoluminescence, DMS, ZnO, Gd |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202100755 |
論文種類: | 學術論文 |
相關次數: | 點閱:274 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文為延續研究,主要在探討摻雜釓的氧化鋅薄膜在室溫的光致螢光光譜和法拉第磁光效應。釓的摻雜莫耳濃度0%到20%,光譜的測量範圍是340 nm至700 nm,磁場介於±900 mT之間。
摻雜不同濃度釓元素的氧化鋅薄膜都會產生鋅空缺,發出Ec→VZn-能階躍遷的螢光,此外除5%薄膜外,各薄膜亦同時有鋅間隙及氧間隙。當摻雜比例上升超過5%時,非本質發光會主宰PL光譜且光譜外型明顯改變。各樣品的總法拉第旋轉角基板加上薄膜的總合,和外加磁場成負斜率的直線關係。單獨觀察基板薄膜亦是如此。基板及薄膜的韋爾代常數介於-0.01287至-0.00399及-5.96000到6.74000 rad/mT.m之間,且隨波長增長量值減小,多數皆為負值,唯5%摻雜薄膜於380 nm到540 nm間為正值。在波長380、420、480及640 nm之韋爾代常數對於摻雜比有先增後減的現象,並在5%時有最大值。此結果有助於找到薄膜對波長在法拉第效應上的最高敏感度。總合兩光譜結果,可發現除摻雜元素可造成磁性,進而改變法拉第磁光效應外,缺陷對薄膜的磁性及法拉第磁光效應亦有相當的影響。
This thesis follows up previous study on Gd-doped ZnO thin films and it focused on photoluminescence (PL) and magneto-optical Faraday effect (MOFE). The mole fraction of gadolinium is from 0% to 20%. The spectral range for both PL and MOFE is from 340 nm to 700 nm. The magnetic field for MOFE ranged between ±900 mT.
Clear defect emission were observed from PL spectra of all Gd-doped ZnO thin films, and the defects were identified as zinc vacancies, zinc interstitials, oxygen vacancies, and oxygen interstitials. For thin films of Gd mole fraction over 5%, defect emissions are dominant in the PL spectra. The total Faraday angle is the sum of substrate’s and thin films’. They were related to magnetic field with negative slope. Verdet constant of substrate was from -0.01287 to -0.00399 rad/mT.m, and films’ ranged from -5.96000 to 6.74000 rad/mT.m. Most Verdet constant were negative, except 5% film’s before 540 nm. The magnitude of Verdet constant decreased while wavelength of incident light increased. At near-band-edge emission and defect emission wavelengths, such as 380, 420, 480, and 640 nm, Verdet constant would grow first then shrink against doped mole fraction growth. Therefore, electron interband transition and defect sub-bands have clear response in magneto-optical Faraday effect. Our study enables us to tune MOFE spectral range and strength by changing Gd doping concentration.
[1] James Clerk Maxwell(1861). On Physical Lines of Force. Philosophical Magazine and Journal of Science.
[2] 莊桓嘉(2014)。氧化鈥鋅/氧化鋅雙層膜結構之物性研究。國立臺灣師範大學碩士論文。
[3] 胡裕民(2004)。溫度與氧壓對氧化鋅摻雜釓的光學性質與磁性影響。物理雙月刊26 卷4 期,587-599 頁。
[4] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand(2000).Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science 11 Feb 2000:Vol. 287, Issue 5455, pp. 1019-1022.
[5] 謝宗均(2015)。氧化釓鋅薄膜在不同鍍膜氧壓下的結構、光學與磁性。國立臺灣師範大碩士論文。
[6] Frederik Claeyssens, Colin L. Freeman, Neil L. Allan, Ye Sun, Michael N.R. Ashfold, and John H. Harding(2005). Growth of ZnO thin films—experiment and theory. Journal of Materials Chemistry vol. 15. 139-148.
[7] Klaus Ellmer, Andreas Klein and Bernd Rech (2007).Transparent Conductive Zinc Oxide, Springer Verlag.
[8] 鄒乙弘(2013)。高機電耦合係數之鋰摻雜鈮酸鈉鉀壓電陶瓷開發及其在單一元件超音波換能器之應用。成功大學電機工程學系碩士論文。
[9] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc(2005). A Comprehensive Review of ZnO Materials and Devices.Journal of Applied Physics, Vol. 98, No. 4, 041301.
[10] 簡志峰(2011)。脈衝雷射蒸鍍法蒸鍍氧化鋅及氧化釓鋅薄膜。國立臺灣師範大碩士論文。
[11] 魏嘉瑩(2009)。釓摻雜氧化鋅鋁透明導電薄膜特性分析。國立中央大學碩士論文。
[12] Stephen Blundell (2001). Magnetism in Condensed Matter, Oxford Univ Pr.
[13] David Halliday and Robert Resnick (2010). Fundamentals of Physics Extended (ninth edition), Wiley.
[14] P. P. Murmu, J. Kennedy, B. J. Ruck, G. V. M. Williams, A. Markwitz, S. Rubanov, and A. A. Suvorova(2012). Microstructural, electrical and magnetic properties of erbium doped zinc oxide single crystals. Journal of Materials Science 47, 1119.
[15] 蔡承佑(2014)。脈衝雷射蒸鍍法製備氧化鈥鋅薄膜的探討:結構、光學與磁性研究。國立台灣師範大學碩士論文。
[16] J.C. Fan, K.M. Sreekanth, Z. Xie, S.L. Chang, K.V. Rao(2013). p-Type ZnO materials: Theory, growth, properties and devices. Progress in Materials Science 58, 874–985.
[17] Magnus Willander, Omer Nur, Jamil Rana Sadaf, Muhammad Israr Qadir, Saima Zaman, Ahmed Zainelabdin, Nargis Bano and Ijaz Hussain(2010). Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices. Materials 2010, 3, 2643-2667.
[18] Kishore Padmaraju(1999). Faraday Effect. Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627.
[19] Horia D. Cornean, Gheorghe Nenciu, and Thomas G. Pedersen(2006). The Faraday effect revisited: General theory. JOURNAL OF MATHEMATICAL PHYSICS 47, 013511.
[20] 駱芳鈺(1999)。BixY3-xFe5O12薄膜法拉第磁光光譜的量測。國立台灣大學物理學系碩士論文。