研究生: |
黃茂城 Huang, Mao-Cheng |
---|---|
論文名稱: |
副熱帶反流區的渦漩對東海黑潮傳輸量之影響 The Impact of Subtropical Counter Current Eddies on Kuroshio Transport off East China Sea |
指導教授: |
張育綾
Chang, Yu-Lin |
學位類別: |
碩士 Master |
系所名稱: |
海洋環境科技研究所 Graduate Institute of Marine Environmental Science and Technology |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 黑潮傳輸量 、渦漩 、副熱帶反流 |
英文關鍵詞: | Kuroshio transport, Eddy, STCC |
論文種類: | 學術論文 |
相關次數: | 點閱:179 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們使用20年的模式再分析資料來測量當渦漩通過之時,渦漩對黑潮傳輸量的影響。這些渦漩來自於副熱帶反流區,一個斜壓不穩定的區域。在渦漩活躍的時期,上游靠近台灣東部的黑潮較平時還要強,主軸的深度更深,且主軸也較平時往東偏移。研究結果發現,黑潮的傳輸量在暖渦通過時增強,冷渦通過時減弱。此外,在冷渦通過測線的過程中有部分流速及傳輸量增加的情況,而此現象與渦漩穿過測線的位置有關。一般而言,傳輸量的計算須藉由海流兩側的海表面高度差來計算,然而,Gawarkiewicz et al. (2011) 藉由台灣東部外海 (123.2o E,23.9o N) 海表面高度異常值和20個月的觀測資料有良好的相關性提出,使用單一點的海表面高度異常值,能夠表示黑潮的傳輸量變化。為了驗證與說明這個想法,我們由海表面高度資料得知,由於副熱帶反流區渦漩的影響,靠大洋側的變化較靠陸地側的還大,因此黑潮傳輸量(兩側高度差的變化)主要被靠近大洋側的海表面變化影響。接著我們延伸此想法,沿著黑潮取了多條側線。結果顯示在副熱帶反流渦漩的影響區域之內,右側單點的海表面高度異常值變化能夠顯著代表黑潮的變化,指出了渦漩對黑潮變化的重要性。
In this study, 20 years JCOPE2 reanalysis data is used to study the effect of mesoscale eddies on Kuroshio east of East China Sea. These eddies come from Subtropical Counter Current (STCC) region, where is recognized as baroclinically unstable area. In eddy-rich years, the upstream Kuroshio is stronger and deeper. The Kuroshio path also shifts eastward. Generally, the warm eddies increase Kuroshio transport and the cold eddies weaken the Kurshio. However, the exceptions are also observed due to the related location where eddies passed by. According to geostrophic relation, transport is calculated taking the sea surface height difference (ΔSSHA) from two sides of current. Gawarkiewicz et al. (2011) proposed the sea surface height anomaly (SSHA) at (123.2oE,23.9oN) can be the proxy of Kuroshio transport based on the good correlation between the SSHA and 20 months observed Kuroshio transport. We explain their idea and extend the time period using satellite altimeter data. The result shows that the SSHA variability at open ocean side has much greater magnitude than the near-shore side due to the effect of STCC eddies. The Kuroshio transport variation (ΔSSHA of two sides) is mainly influenced by the SSHA on oceanic side, so that the single station can serve as the proxy of Kuroshio transport. We apply this idea along the Kuroshio path. The result shows that single points SSHA variability on the open ocean side can account for the Kuroshio variability in STCC eddy effective area. This results address the importance of eddies on Kuroshio transport.
Chang, Y.-L. and L.-Y. Oey (2011), Interannual and seasonal variations of Kuroshio transport east of Taiwan inferred from 29 years of tide-gauge data. Geophysical Research Letters, doi:10.1029/2011GL047062
Chang, Y.-L., and L.-Y. Oey (2014), Analysis of STCC eddies using the Okubo–Weiss parameter on model and satellite data, Ocean Dynamics, 64(2), 259-271, doi:10.1007/s10236-013-0680-7.
Chang, Y.-L., Y. Miyazawa and X. Guo (2015), Effects of the STCC eddies on the Kuroshio based on the 20-years JCOPE2 reanalysis result., Prog. Oceanogr., http://dx.doi.org/10.1016/j.pocean.2015.04.006
Chao, S.-Y. (1991), Circulation of the East China Sea, a numerical study, Journal of the Oceanographical Society of Japan, 46(6), 273-295, doi:10.1007/BF02123503.
Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke (2007), Global observations of large oceanic eddies, Geophysical Research Letters, 34(15), L15606, doi:10.1029/2007GL030812.
Chelton, D. B., M. G. Schlax, and R. M. Samelson (2011), Global observations of nonlinear mesoscale eddies, Progress in Oceanography, 91(2), 167-216, doi:http://dx.doi.org/10.1016/j.pocean.2011.01.002.
Gawarkiewicz, G., S. Jan, P.F.J. Lermusiaux, J.L. McClean, L. Centurioni, K. Taylor, B. Cornuelle, T.F. Duda, J. Wang, Y.J. Yang, T. Sanford, R.-C. Lien, C. Lee, M.-A. Lee, W. Leslie, P.J. Haley Jr., P.P. Niiler, G. Gopalakrishnan, P. Velez-Belchi, D.-K. Lee, and Y.Y. Kim. “Circulation and Intrusions Northeast of Taiwan: Chasing and Predicting Uncertainty in the Cold Dome.” Oceanography 24.4 (2011): 110–121. Web. ©2011 The Oceanography Society, Inc.
Guo, X., H. Hukuda, Y. Miyazawa, and T. Yamagata (2003), A Triply Nested Ocean Model for Simulating the Kuroshio—Roles of Horizontal Resolution on JEBAR, Journal of Physical Oceanography, 33(1), 146-169, doi:10.1175/1520-0485(2003)033<0146:ATNOMF>2.0.CO;2.
Hwang, C., C.-R. Wu, and R. Kao (2004), TOPEX/Poseidon observations of mesoscale eddies over the Subtropical Countercurrent: Kinematic characteristics of an anticyclonic eddy and a cyclonic eddy, Journal of Geophysical Research: Oceans, 109(C8), C08013, doi:10.1029/2003JC002026.
Ichikawa, K. (2001), Variation of the Kuroshio in the Tokara Strait Induced by Meso-Scale Eddies, Journal of Oceanography, 57(1), 55-68, doi:10.1023/A:1011174720390.
Ichikawa, K., R. Tokeshi, M. Kashima, K. Sato, T. Matsuoka, S. Kojima, and S. Fujii (2008), Kuroshio variations in the upstream region as seen by HF radar and satellite altimetry data, International Journal of Remote Sensing, 29(21), 6417-6426, doi:10.1080/01431160802175454.
Johns, W. E., T. N. Lee, D. Zhang, R. Zantopp, C.-T. Liu, and Y. Yang (2001), The Kuroshio East of Taiwan: Moored Transport Observations from the WOCE PCM-1 Array, Journal of Physical Oceanography, 31(4), 1031-1053, doi:10.1175/1520-0485(2001)031<1031:TKEOTM>2.0.CO;2.
Miyazawa, Y., R. Zhang, X. Guo, H. Tamura, D. Ambe, J.-S. Lee, A. Okuno, H. Yoshinari, T. Setou, and K. Komatsu (2009), Water mass variability in the western North Pacific detected in a 15-year eddy resolving ocean reanalysis, Journal of Oceanography, 65(6), 737-756, doi:10.1007/s10872-009-0063-3.
Okubo, A. (1970), Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences, Deep Sea Research and Oceanographic Abstracts, 17(3), 445-454, doi:http://dx.doi.org/10.1016/0011-7471(70)90059-8.
Qiu, B., K. A. Kelly, and T. M. Joyce (1991), Mean flow and variability in the Kuroshio Extension from Geosat altimetry data, Journal of Geophysical Research: Oceans, 96(C10), 18491-18507, doi:10.1029/91JC01834.
Qiu, B., R. B. Scott, and S. Chen (2008), Length Scales of Eddy Generation and Nonlinear Evolution of the Seasonally Modulated South Pacific Subtropical Countercurrent, Journal of Physical Oceanography, 38(7), 1515-1528, doi:10.1175/2007JPO3856.1.
Qiu, B., and S. Chen (2010), Interannual Variability of the North Pacific Subtropical Countercurrent and Its Associated Mesoscale Eddy Field, Journal of Physical Oceanography, 40, 213–225.
doi: http://dx.doi.org/10.1175/2009JPO4285.1
Qiu, B., and S. Chen (2011), Effect of Decadal Kuroshio Extension Jet and Eddy Variability on the Modification of North Pacific Intermediate Water, Journal of Physical Oceanography, 41(3), 503-515, doi:10.1175/2010JPO4575.1.
Robinson, A. R. (Ed.) (1983), Eddies in Marine Science, 609 pp., Springer, New York.
Soeyanto, E., X. Guo, J. Ono, and Y. Miyazawa (2014), Interannual variations of Kuroshio transport in the East China Sea and its relation to the Pacific Decadal Oscillation and mesoscale eddies, J. Geophys. Res. Oceans, 119, 3595–3616, doi:10.1002/2013JC009529.
Sverdrup, H. U. (1947), Wind-Driven Currents in a Baroclinic Ocean; with Application to the Equatorial Currents of the Eastern Pacific, Proceedings of the National Academy of Sciences of the United States of America, 33(11), 318-326.
Wang, J., and L.-Y. Oey (2014), Inter-annual and decadal fluctuations of the Kuroshio in East China Sea and connection with surface fluxes of momentum and heat, Geophys. Res. Lett., 41, 8538–8546, doi:10.1002/2014GL062118.
Weiss, J. (1991), The dynamics of enstrophy transfer in two-dimensional hydrodynamics, Physica D: Nonlinear Phenomena, 48(2–3), 273-294, doi:http://dx.doi.org/10.1016/0167-2789(91)90088-Q.
Yang, Y., C.-T. Liu, J.-H. Hu, and M. Koga (1999), Taiwan Current (Kuroshio) and Impinging Eddies, Journal of Oceanography, 55(5), 609-617, doi:10.1023/A:1007892819134.
Zhang, D., T. N. Lee, W. E. Johns, C.-T. Liu, and R. Zantopp (2001), The Kuroshio East of Taiwan: Modes of Variability and Relationship to Interior Ocean Mesoscale Eddies, Journal of Physical Oceanography, 31(4), 1054-1074, doi:10.1175/1520-0485(2001)031<1054:TKEOTM>2.0.CO;2.