簡易檢索 / 詳目顯示

研究生: 嶺瑤蓉
Yau Rong Liing
論文名稱: 植物萃取物對痤瘡致病菌之生長、菌膜形成與脂解酶活性的抑制作用
Inhibitory effects of botanical extracts on the growth, biofilm and lipase activity of acne-causing bacteria
指導教授: 蔡帛蓉
Tsai, Po-Jung
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 124
中文關鍵詞: 尋常性痤瘡痤瘡桿菌表皮葡萄球菌脂解酶菌膜抗菌抗氧化HPLC
英文關鍵詞: Propionibacterium acnes, Staphylococcus epidermidis, herbs, anti-acne, lipase, biofilm formation, anti-oxidation, HPLC
論文種類: 學術論文
相關次數: 點閱:218下載:41
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 尋常性痤瘡(acne vulgaris),是一種常見的皮膚疾病。痤瘡桿菌(Propionibacterium acnes)和表皮葡萄球菌(Staphylococcus epidermidis)存在於人類皮膚含皮脂腺的毛囊(pilosebaceous follicle),在尋常性痤瘡的致病過程中扮演著重要角色。這些痤瘡致病菌(acne-causing bacteria)會形成菌膜(biofilm)抵抗外在不良的環境條件,也是產生抗藥性的因子之ㄧ,另外其所分泌的胞外脂解酶,水解皮脂中三酸甘油酯供給菌體所需養份,同時誘發後續的發炎反應。P. acnes感染角質細胞時,會刺激細胞產生超氧陰離子(superoxide anions),雖抑制P. acnes生長但會引發角質細胞分解,誘導發炎反應。
    我們篩選34種市售植物乙醇萃取物的抗菌活性,結果發現迷迭香(Rosmarinus officinalis )、鼠尾草(Salvia officinalis L. )、紅茶、綠茶(Camellia sinensis )及馬鞭草(Verbena officinalis Linn)可有效抑制P. acnes生長。所以在後續實驗,我們製備了上述五種植物的乙醇、甲醇、乙酸乙酯(ethyl acetate)及水萃取物作為試驗材料,分別評估其抗菌能力以及對P. acnes菌膜(biofilm),脂解酶活性(lipase activity)和對活性氧屬的抑制效果。最後,使用HPLC分析迷迭香萃取物之有效成份並加以定量。
    本研究結果發現,在乙醇萃取物中,抑制P. acnes生長效果最好的是紅茶及綠茶,而抑制S. epidermidis生長效果最好的則是馬鞭草。在甲醇萃取物中,抑制P. acnes生長效果最好的是紅茶及綠茶,而抑制S. epidermidis生長效果最好的則為迷迭香萃取物。在乙酸乙脂萃取物中,抑制P. acnes生長效果最好的是紅茶及綠茶,而抑制S. epidermidis生長效果最好的則為迷迭香。在水萃取物中,抑制P. acnes和S. epidermidis生長效果最好的皆為紅茶及綠茶,迷迭香於本實驗的條件下,不具有抑菌的效果,馬鞭草萃取物不具有抑制S. epidermidis生長的效果。
    植物萃取物對P. acnes菌膜形成(biofilm formation)之影響的實驗結果,在菌膜生成過程中,觀察植物萃取物於培養第16 hr和48 hr時對於菌膜biomass的影響,這兩個時間點分別用來代表萃取物抑制菌膜形成(prevention of biofilm formation;簡寫為PBF)和移除菌膜的能力(removal of established biofilm;簡寫為REB)。結果發現,迷迭香、鼠尾草、紅茶、綠茶及馬鞭草的乙醇、甲醇、EA及水萃取物具有PBF之能力,而鼠尾草和綠茶的乙醇、甲醇及水萃取物具REB之效果。
    植物萃取物抑制P. acnes及S. epidermidis脂解酶活性的實驗結果中,馬鞭草、迷迭香、鼠尾草、綠茶以及紅茶萃取物皆顯著抑制脂解酶活性。植物萃取物清除自由基之能力的實驗結果中,(a)清除DPPH及一氧化氮自由基能力:綠茶及紅茶萃取物清除DPPH及一氧化氮自由基能力最好,迷迭香及馬鞭草萃取物次之,鼠尾草萃取物最差。(b)清除超氧陰離子自由基能力:綠茶及紅茶萃取物清除超氧陰離子自由基能力最好,迷迭香及鼠尾草萃取物次之,馬鞭草萃取物最差。(c)清除羥基自由基能力:綠茶及紅茶萃取物清除羥基自由基能力最好,鼠尾草及馬鞭草萃取物次之,迷迭香萃取物最差。(d)總多酚含量:綠茶及紅茶萃取物總酚含量最高,馬鞭草萃取物次之,迷迭香及鼠尾草萃取物最少。HPLC分析迷迭香萃取物之有效成份的實驗結果中,除了迷迭香水萃物外,迷迭香乙醇、甲醇及EA萃取物皆含有迷迭香、鼠尾草酚及鼠尾草酸等有效成份,並且含量皆是迷迭香甲醇萃取物最高、乙醇萃取物次之,EA萃取物含量最少。
    綜合上述結果,迷迭香、鼠尾草、紅茶、綠茶及馬鞭草萃取物均具有抑制痤瘡致病菌生長、菌膜形成及脂解酶活性之能力,並且具有優異的抗氧化能力,故以上五種植物萃取物具有治療痤瘡及抗氧化的潛力。未來在臨床上可應用於預防或是緩解痤瘡,也能減少使用抗生素所產生之抗藥性。

    Acne vulgaris is a chronic disorder of the pilosebaceous follicles of the skin. Acne-causing bacteria, such as Propionibacterium acnes and Staphylococcus epidermidis, play an important role in the pathogenesis of acne vulgaris. Both bacteria resided within the follicles grow as a biofilm and hydrolyzed triglyceride to free fatty acids by bacterial lipase has been proposed as a major factor in the pathogenesis of acne vulgaris. ROS, and especially superoxide anions, were rapidly produced by keratinocytes upon stimulation by P. acnes surface proteins. In addition, superoxide anions were generated by P. acnes stimulated keratinocytes and involved in the development of acne inflammatory lesions. The aim of this study was to investigate inhibitory effects of various botanical extracts on growth, biofilm formation, and extracellular lipase activity of acne-causing bacteria and their anti-oxidation properties. Aqueous, methanolic, ethanolic and EA extract of rosemary were analyzed and quantified by HPLC.
    The antimicrobial activity of extracts was assessed by determining of minimum inhibitory concentration (MIC) values obtained by a modified microdilution broth method. Results showed that ethanolic, methanolic, ethyl-acetate and aqueous extracts of rosemary, sage, verbena, green tea and black tea significantly inhibited the growth of acne-causing bacteria, including P. acnes and S. epidermidis. Aqueous extract of verbena significantly inhibited the growth of P. acnes.
    We also tested the inhibitory activity of botanical extracts on the biofilm-forming ability of P. acnes in a microtiter plate model. In a preliminary experiment, we determined the optimal conditions for P. acnes biofilm formation. A mature biofilm (i.e. a biofilm in which the biomass does not significantly increase any further) was established following 48 hr incubation. Following 16 hr incubation, ethanolic, methanolic, ethyl-acetate and aqueous extracts of rosemary, sage, verbena, green tea, and black tea significantly prevented biofilm formation of P. acnes. In addition, ethanolic, methanolic and aqueous extracts of sage and green tea could remove established mature biofilm of P. acne.
    Furthermore, we conducted experiments to investigate the inhibitory effect of botanical extracts on crude lipase activity of acne-causing bacteria. Results showed that ethanolic, methanolic, ethyl-acetate and aqueous extracts of rosemary, sage, verbena, green tea and black tea significantly inhibited lipolytic activity of crude lipase purified from P. acnes and S. epidermidis.
    In the present study, the antioxidant activity of botanical extracts was determined by the scavenging activities of 2, 2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide, superoxide and hydroxyl radical . We also evaluated the total phenolic contents of botanical extracts. The potent radical scavenging effects were observed in ethanolic, methanolic, ethyl-acetate and aqueous extracts of rosemary, sage, verbena, green tea, and black tea. Besides aqueous extract of rosemary, rosmarinic acid, carnosol and carnosic acid were determined and quantified by HPLC in the methanolic, ethanolic and EA extract of rosemary.
    In conclusion, extracts of rosemary, sage, verbena, green tea, and black tea had potent inhibitory effects on the growth, lipolytic activity and biofilm formation of acne-causing bacteria and possessed excellent anti-oxidative properties.These data suggested that extracts of rosemary, sage, verbena, green tea, and black tea may be potentially therapeutic agents for the treatment of acne vulgaris.

    目錄 第一章 緒論 1 一、 研究動機 1 二、 研究目的 2 第二章 文獻探討 3 第一節 痤瘡的致病因子與機制 3 第二節 痤瘡致病菌與痤瘡 5 第三節 材料介紹 22 第三章 材料與方法 37 第一節 植物樣品製備 37 第二節 研究材料 37 第三節 研究設計 39 第四節 研究方法 40 第五節 統計分析 52 第四章 結果 53 第一節 植物樣品萃取率 53 第二節 評估植物萃取物對痤瘡致病菌的生長、菌膜形成、及脂解酶活性之影響和清除自由基的能力 54 1. 迷迭香 55 (1) 迷迭香萃取物抑制P. acnes和S. epidermidis生長 55 (2) 迷迭香萃取物對菌膜形成之影響 56 (a) 菌膜之生長曲線 56 (b) 迷迭香萃取物對P. acnes菌膜之影響 57 a. 在抑制菌膜形成(prevention of biofilm formation;簡寫為PBF)的實驗 57 b 在移除菌膜(removal of established biofilm;簡寫為REB)實驗 58 (3) 迷迭香萃取物對脂解酶活性之影響 59 (a) 脂解酶粗萃液的蛋白質電泳及活性膠體電泳分析 59 (b) 脂解酶活性(lipase activity) 61 (c) 四環黴素對脂解酶活性之影響 62 (d) 迷迭香萃取物對脂解酶活性之影響 63 a. 迷迭香萃取物抑制P. acnes脂解酶活性 63 b. 迷迭香萃取物抑制S. epidermidis脂解酶活性 63 (4) 迷迭香萃取物之抗氧化能力 65 (a) 迷迭香萃取物清除DPPH自由基的能力 65 (b) 迷迭香萃取物清除一氧化氮自由基的能力 65 (c) 迷迭香萃取物清除超氧陰離子自由基的能力 66 (d) 迷迭香萃取物清除羥基自由基的能力 66 (5) 迷迭香萃取物總酚含量 67 (6) 以HPLC分析迷迭香萃取物之有效成份及含量 68 (a) 迷迭香酸的含量 71 (b) 鼠尾草酚的含量 71 (c) 鼠尾草酸的含量 72 2. 紅茶及綠茶 73 (1) 紅茶及綠茶萃取物抑制P. acnes和S. epidermidis生長 73 (2) 紅茶及綠茶萃取物對P. acnes菌膜之影響 74 (a) 抑制菌膜形成(prevention of biofilm formation;簡寫為PBF) 74 (b) 在移除菌膜(removal of established biofilm;簡寫為REB) 75 (3) 紅茶及綠茶萃取物對脂解酶活性的影響 76 (a) 紅茶及綠茶萃取物抑制P. acnes脂解酶活性 76 a. 紅茶萃取物 76 b. 綠茶萃取物 76 (b) 紅茶及綠茶萃取物抑制S. epidermidis脂解酶活性 77 a. 紅茶萃取物 77 b. 綠茶萃取物 77 (4) 紅茶及綠茶萃取物清除自由基的能力 79 (a) 紅茶清除自由基的能力 79 a. 紅茶萃取物清除DPPH自由基的能力 79 b. 紅茶清除一氧化氮自由基的能力 79 c. 紅茶清除超氧陰離子自由基的能力 80 d. 紅茶清除羥基自由基的能力 80 (b) 綠茶萃取物清除自由基的能力 81 a. 綠茶萃取物清除DPPH自由基的能力 81 b. 綠茶萃取物清除一氧化氮自由基的能力 81 c. 綠茶萃取物清除超氧陰離子自由基的能力 82 d. 綠茶萃取物清除羥基自由基的能力 82 (c) 紅茶及綠茶萃取物總酚含量 83 a. 紅茶萃取物的總酚含量 83 b. 綠茶萃取物的總酚含量 83 3. 鼠尾草 84 (1) 鼠尾草萃取物抑制P. acnes和S. epidermidis生長 84 (2) 鼠尾草萃取物對P. acnes菌膜之影響 85 (a) 抑制菌膜形成(prevention of biofilm formation;簡寫為PBF) 85 (b) 在移除菌膜(removal of established biofilm;簡寫為REB) 86 (3) 鼠尾草萃取物對脂解酶活性的影響 87 (a) 鼠尾草萃取物抑制P. acnes脂解酶活性 87 (b) 鼠尾草萃取物抑制S. epidermidis脂解酶活性 87 (4) 鼠尾草清除自由基的能力 89 (a) 鼠尾草萃取物清除DPPH自由基的能力 89 (b) 鼠尾草清除一氧化氮自由基的能力 89 (c) 鼠尾草清除超氧陰離子自由基的能力 90 (d) 鼠尾草清除羥基自由基的能力 90 (5) 鼠尾草萃取物之總多酚含量 91 4. 馬鞭草 92 (1) 馬鞭草萃取物抑制P. acnes和S. epidermidis生長 92 (2) 馬鞭草萃取物對P. acnes菌膜之影響 93 (a) 抑制菌膜形成(prevention of biofilm formation;簡寫為PBF) 93 (b) 在移除菌膜(removal of established biofilm;簡寫為REB) 94 (3) 馬鞭草萃取物對脂解酶活性的影響 95 (a) 馬鞭草萃取物抑制P. acnes脂解酶活性 95 (b) 馬鞭草萃取物抑制S. epidermidis脂解酶活性 95 (4) 馬鞭草清除自由基的能力 97 (a) 馬鞭草清除DPPH自由基的能力 97 (b) 馬鞭草清除一氧化氮自由基的能力 97 (c) 馬鞭草清除超氧陰離子自由基的能力 98 (d) 馬鞭草清除羥基自由基的能力 98 (5) 馬鞭草萃取物的總多酚含量 99 第五章 討論與結論 100 參考文獻 116 中文部份 116 英文部份 116 圖目錄 圖2-1 痤瘡形成之過程 4 圖2-2 分離自形成粉刺的毛囊漏斗部中P. acnes電子顯微照片 5 圖2-3 抗菌劑的作用機轉 7 圖2-4 Erythromycin的化學結構 8 圖2-5 Clindamycin化學結構 8 圖2-6 四環黴素化學結構 8 圖2-7 Doxycycline化學結構 8 圖2-8 Benzoyl peroxide化學結構 9 圖2-9 菌膜形成的模式 12 圖2-10 P. acnes刺激表皮細胞產生活性氧屬及IL-8的機制 16 圖2-11 多酚類的化學結構 18 圖2-12 黃酮類化合物的化學結構 19 圖2-13 輔抗氧化物的結構 21 圖2-14 迷迭香 27 圖2-15 鼠尾草 27 圖2-16 綠茶 28 圖2-17 紅茶 28 圖2-18 馬鞭草 29 圖3-1 以Broth dilution method評估植物萃取物抑菌能力之示意圖 41 圖3-2 藉由活性氧屬誘導luminol所產生的化學冷光反應 52 圖4-1 P. acnes菌膜形成的之生長曲線 56 圖4-2 迷迭香萃取物抑制P. acnes 菌膜形成之效果 57 圖4-3 迷迭香萃取物移除P. acnes 菌膜形成之效果 58 圖4-4 P. acnes脂解酶之(A)蛋白質電泳及(B)活性膠體電泳分析 59 圖4-5 S. epidermidis脂解酶之(A)蛋白質電泳及(B)活性膠體電泳分析 60 圖4-6 不同濃度(A) P. acnes及(B) S. epidermidis脂解酶劑量與時間反應曲線 61 圖4-7 四環黴素對(A) P. acnes和(B) S. epidermidis脂解酶活性之抑制效果 62 圖4-8 不同濃度迷迭香萃取物對(A) P. acnes及(B) S. epidermidis脂解酶活性之效果 63 圖4-9 不同濃度迷迭香萃取物清除(A) DPPH及(B) NO自由基之能力 65 圖4-10 不同濃度迷迭香萃取物清除(A)超氧陰離子及(B)羥基自由基之能力 66 圖4-11 三種迷迭香萃取物標準品混合溶液的高壓液相層析圖 68 圖4-12 迷迭香乙醇萃取物的高壓液相層析圖 69 圖4-13 迷迭香甲醇萃取物的高壓液相層析圖 69 圖4-14 迷迭香EA萃取物的高壓液相層析圖 70 圖4-15 迷迭香水萃取物的高壓液相層析圖 70 圖4-16 迷迭香酸標準品之檢量線 71 圖4-17 鼠尾草酚標準品之檢量線 71 圖4-18 鼠尾草酸標準品之檢量線 72 圖4-19 (A)紅茶及(B)綠茶萃取物抑制P. acnes菌膜形成之效果 74 圖4-20 (A)紅茶及(B)綠茶萃取物移除P. acnes菌膜形成之效果 75 圖4-21 不同濃度(A)紅茶及(B)綠茶萃取物對P. acnes脂解酶活性之效果 76 圖4-22 不同濃度(A)紅茶及(B)綠茶萃取物對S. epidermidis脂解酶活性之效果 77 圖4-23 紅茶萃取物清除DPPH及一氧化氮自由基之能力 79 圖4-24 不同濃度紅茶萃取物清除超氧陰離子和羥基自由基之能力 80 圖4-25 不同濃度綠茶萃取物清除DPPH及一氧化氮自由基之能力 81 圖4-26 不同濃度綠茶萃取物清除超氧陰離子與羥基自由基之能力 82 圖4-27 鼠尾草萃取物抑制P. acnes菌膜形成之效果 85 圖4-28 鼠尾草萃取物移除P. acnes菌膜形成之效果 86 圖4-29 不同濃度鼠尾草萃取物對(A) P. acnes和S . epidermidis脂解酶活性之效果 87 圖4-30 不同濃度鼠尾草萃取物清除DPPH及一氧化氮自由基之能力 89 圖4-31 不同濃度鼠尾草萃取物清除超氧陰離子及羥基自由基之能力 90 圖4-32 馬鞭草萃取物抑制P. acnes菌膜形成之效果 93 圖4-33 馬鞭草萃取物移除P. acnes菌膜之效果 94 圖4-34 不同濃度馬鞭草萃取物對(A) P. acnes和(B) S. epidermidis脂解酶活性之效果 95 圖4-35 不同濃度馬鞭草萃取物清除DPPH及一氧化氮自由基之能力 97 圖4-36 不同濃度馬鞭草萃取物清除超氧陰離子及羥基自由基之能力 98 圖5-1 定義為抗生素增強劑的植物產物 108 圖5-2 紅茶中theaflavins的結構 112 表目錄 表2-1 P. acnes在痤瘡致病機轉 6 表2-2 來自植物的抗菌化合物的主要類別 11 表2-3 Phytochemical在菌膜形成及相關作用的效果 14 表2-4 植物萃取物之化學成分 30 表2-4-1 植物萃取物之化學成分(續) 31 表2-4-2 植物萃取物之化學成分(續) 32 表2-4-3 植物萃取物之化學成份(續) 33 表2-4-4 植物萃取物之化學成份(續) 34 表2-4-5 植物萃取物之化學成份整理表(續) 35 表2-4-5 植物萃取物之化學成份整理表(續) 36 表3-1 硫酸銨飽和濃度表 45 表4-1 數種植物乙醇萃取物之回收率 53 表4-2 測試植物之各種萃取物之萃取產率 54 表4-3 迷迭香萃取物對P. acnes和S. epidermidis之抑菌能力 55 表4-4 迷迭香萃取物對P. acnes和S. epidermidis脂解酶活性之效果 64 表4-5 迷迭香萃取物之抗氧化能力 67 表4-6 迷迭香萃取物之有效成份含量 72 表4-7 紅茶及綠茶取物對P. acnes和S. epidermidis之抑菌能力 73 表4-8 紅茶及綠茶萃取物對P. acnes和S. epidermidis脂解酶活性之效果 78 表4-9 紅茶及綠茶萃取物之抗氧化能力 83 表4-10 鼠尾草萃取物對P. acnes和S. epidermidis之抑菌能力 84 表4-11 鼠尾草萃取物對P. acnes和S. epidermidis脂解酶活性之效果 88 表4-12 鼠尾草萃取物之抗氧化能力 91 表4-13 馬鞭草萃取物對P. acnes和S. epidermidis之抑菌能力 92 表4-14 馬鞭草萃取物對P. acnes和S. epidermidis脂解酶活性之效果 86 表4-15 馬鞭草萃取物之抗氧化能力 99 表5-1 萃取活性成份之溶劑 107 表5-2 茶中兒茶素、沒食子酸及咖啡因的含量 112 表5-3 HPLC分析各個theaflavins的含量 113 表6-1 植物萃取物對痤瘡致病菌生長、菌膜形成及脂解酶活性的影響 118 表6-1-1 植物萃取物對痤瘡致病菌生長、菌膜形成及脂解酶活性的影響(續) 119

    中文部分
    莊榮輝(2001)。表現蛋白質之純化與檢定。載於生物技術方法 卷一 生物技術核心實驗 (頁67-87)。台北市:國立台灣大學生物技術研究中心。

    西文部分
    Abdullaev, F. I. (2002). Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Experimental biology and medicine. 227, 20-5.
    Adegoke, G. O. & Odesola, B.A. (1996). Storage of maize and cowpea and inhibition of microbial agents of biodeterioration using the powder and essential oil of lemon grass (Cymbopogon citratus). International Biodeterioration & Biodegradation. 37, 81-4.
    Asl, M. N. & Hosseinzadeh, H. (2008). Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytotherapy research. 22, 709–24.
    Batubara, I., Mitsunaga , T., & Ohashi, H. (2010) Brazilin from Caesalpinia sappan wood as an antiacne agent. Journal of Wood Science. 56, 77–81.
    Bernhard, R. A. Wijesekera, R.O.B. & Chichestera, C.O. (1971). Terpenoids of cardamom oil and their comparative distribution among varieties. Phytochemical. 10, 177-84.
    Bode, A. M. & Dong, Z. (2004). Ginger : Herbal and traditional medicine: molecular aspects of health (pp. 165-77). New York, NY: Marcel Dekker.
    Bowry, V.W., Mohr, D., Cleary, J., Stocker, R. (1995). Prevention of tocopherol-mediated peroxidation in ubiquinol-10-free human low density lipoprotein. The Journal of biological chemistry. 270, 5756-63.
    Bozin, B., Mimica-Dukic, N., Sammojlik, I., & Jovin, E. (2007). Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential Oils. Journal of Agricultural and Food Chemistry. 55, 7879–85.
    Burkhart, C. G.& Burkhart, C. N. (2007). Expanding the microcomedone theory and acne therapeutics: Propionibacterium acnes biofilm produces biological glue that holds corneocytes together to form plug. Journal of the American academy of dermatology. 57, 722-4.
    Burkhart, C. G., Burkhart, C. N., & Lehmann, P. L. (1999). Acne: a review of immunologic and microbiologic factors. Postgraduate medical journal. 75, 328–31.
    Chang, H.L., Hsu, H.K., Su, J.H., Wang, P.H., Chung, Y.F., Chia, Y.C., Tsai, L.Y., Wu, Y.C.& Yuan, S.S. (2006). The fractionated Toona sinensis leaf extract induces apoptosis of human ovarian cancer cells and inhibits tumor growth in a murine xenograft model. Gynecologiconcology. 102, 309-14.
    Chao, W. W., Hong, Y. H., Chenc, M. L. & Lin, B. F. (2010). Inhibitory effects of Angelica sinensis ethyl acetate extract and major compounds on NF-κB trans-activation activity and LPS-induced inflammation. Journal of ethnopharmacology. 129, 244–9.
    Chen, H. M., Wu, Y. C., Chia, Y. C., Chang, F. R., Hsu, H. K., Hsieh, Y. C., Chen, C. C. & Yuan, S. S. (2009). Gallic acid, a major component of Toona sinensis leaf extracts, contains a ROS-mediated anti-cancer activity in human prostate cancer cells. Cancer letters. 286, 161-71.
    Chen, X & Stewart, P. S. (2000). Biofilm removal caused by treatment. Water research. 34, 4229-33.
    Cheng Z, Yan G, Li Y, Chang W. (2003). Determination of antioxidant activity of phenolic antioxidants in a fenton-type reaction system by chemiluminescence assay. Analytical and bioanalytical chemistry. 375, 376-80.
    Chomnawang, M.T., Surassmo, S., Nukoolkarn, V. S., Dessinioti & Gritsanapan, W. (2005). Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria. Journal of Ethnopharmacology. 101, 330–3.
    Coates, A. Hu, Y., Bax, R. & Page, C. (2002). The future challenges facing the development of new antimicrobial drugs. Nature reviews drug discovery.1, 895-910.
    Coenye, T., Peeters, E. & Nelis, H. J. (2007). Biofilm formation by Propionibacterium acnes is associated with increased resistance to antimicrobial agents and increased production of putative virulence factors. Research in microbiology. 158, 386-92.
    Conforti, F. Statti, G.A. Tundis, R., Loizzo, M.R. & Menichini, F. (2007). In vitro activities of Citrus medica L. cv. Diamante (Diamante citron) relevant to treatment of diabetes and Alzheimer's disease. Phytotherapy research. 21, 427-33.
    Costerton, J.W., Geesey, G.G. & Cheng, K.J. (1989). How bacteria stick. Scientific American. 238, 86–95.
    Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical microbiology reviews.12, 564–82.
    Craig, W. J. (1999). Health-promoting properties of common herbs. The American journal of clinical nutrition. 70, 491S–9S.
    Cuvelier, M. E., Richard, H. & Berset, C. (1996). Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. Journal of the American oil chemists' society. 73, 645-52.
    Daglia, M., Tarsi, R., Papetti, A., Grisoli, P., Dacarro, C., Pruzzo, C. & Gazzani, Z.(2002). Antiadhesive effect of green and roasted coffee on Streptococcus mutans adhesive properties on saliva-coated hydroxyapatite beads. Journal of agricultural and food chemistry. 50, 1225-29.
    Dans, A.M., Villarruz, M.V., Jimeno, C.A., Javelosa, M.A., Chua, J., Bautista, R. & Velez, G.G. (2007). The effect of Momordica charantia capsule preparation on glycemic control in type 2 diabetes mellitus needs further studies. Journal of clinical epidemiology. 60, 554-9.
    Danby, F.W. (2008). Diet and acne. Clinics in dermatology. 26, 93–6.
    Dessinioti, C., & Katsambas, A. D. (2010). The role of Propionibacterium acnes in acne pathogenesis: facts and controversies. Clinics in dermatology. 28, 2–7.
    Deepak, M. & Handa, S. S. (2000). Antiinflammatory activity and chemical composition of extracts of Verbena officinalis. Phytotherapy research. 14, 463-5.
    Diaz, P., Prim, N. & Javier Pastor, F. I. (1999). Direct fluorescence-based lipase activity assay. Biotechniques. 27, 696-8.
    Doba, T., Burton, G.W., & Ingold, K.U. (1985). Antioxidant and co-antioxidant activity of vitamin C. The effect of vitamin C, either alone or in the presence of vitamin E or a water-soluble vitamin E analogue, upon the peroxidation of aqueous multilamellar phospholipid liposomes. Biochimica et biophysica acta. 835, 298-303.
    Donlan, R. M. & Costerton, J. W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical microbiology reviews. 167–93.
    Dorman, H. J.& Deans, S.G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of applied microbiology. 88, 308-16.
    El-Hela, A & Bdullah, A. (2010). Antioxidant and antimicrobial activities of methanol extracts of some Verbena species: in vitro evaluation of antioxidant and antimicrobial activity in relation to polyphenolic content. Journal of applied sciences research. 6, 683-9.
    Eskin, N.A., Raju, J., & Bird, R.P. (2007). Novel mucilage fraction of Sinapis alba L. (mustard) reduces azoxymethane-induced colonic aberrant crypt foci formation in F344 and Zucker obese rats. Phytomedicine. 14, 479-85.
    Evensen, N. A. & Braun, P. C. (2009). The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. Canadian Journal of Microbiology. 55. 1033-9.
    Exarchou, V., Nenadis, N., Tsimidou, M., Gerothanassis, I. P., Troganis, A. & Boskou, D. (2002). Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage, and summer savory. Journal of agricultural and food chemistry. 50, 5294-9.
    Falcocchio, S., Ruiz, F., Javier Pastor, F.I., Saso, L. & Diaz, P. (2006). Propionibacterium acnes GehA lipase, an enzyme involved in acne development, can be successfully inhibited by defined natural substances. Journal of Molecular Catalysis B: Enzymatic. 40, 132–37.
    Farrell, A. M . Foster, T. J. & Holland, K.T. (1993). Molecular analysis and expression of the lipase of Staphylococcus epidermidis. Journal of general microbiology.139, 267-77.
    Ferracane, R., Graziani, G., Gallo, M., Fogliano, V., & Ritieni, A.(2010). Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. Journal of pharmaceutical and biomedical analysis. 51, 399–404.
    Foo, L. Y., Lu, Y., Howell, A. B., Vorsa, N. (2000). A-type proanthocyanidin trimers from cranberry that inhibit adherence of uropathogenic P-fimbriated Escherichia coli. Journal of natural products. 63, 1225-8.
    Fu, Y., Zu, Y., Chen, L., Shi, X., Wang, Z., Sun, S. & Efferth, T. (2007). Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytotherapy research : PTR. 10, 989-94.
    Gollnick, H. (2003). Current concepts of the pathogenesis of acne implications for drug treatment. Drugs. 63, 1579-96.
    Golub, L.M., Lee, H.-M., Ryan, M.E., Giannobile, W.V., Payne, J.& Sorsa, T. (1998). Tetracycline inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Advances in dental research. 12, 12-26.
    González-Lamothe, R., Mitchell, G., Gattuso, M., S., Diarra, S. M., Malouin, F., & Bouarab, K. (2009). Plant antimicrobial agents and their effects on plant and human pathogens. International journal of molecular sciences. 10, 3400-19.
    Grange, P. A., Chéreau, C., Raingeaud, J., Nicco, C., Weill, B., Dupin, N. & Batteux, F. (2009). Production of superoxide anions by keratinocytes initiates P. acnes-induced inflammation of the skin. Plos pathogens. 5, 1-10.
    Gupta, R. Rathi, P. Gupta, N.& Bradoo, S. (2003). Lipase assays for conventional and molecular screening: an overview. Biotechnology and applied biochemistry. 37, 63–71.
    Halliwell, B. & Gutteridge, J. M. C. (1990). Role of free radicals and catalytic metalions in human disease: an overview. Methods in enzymology. 86, 1-85.
    Halliwell, B., Murcia, M. A., Chirico, S., Aruoma, O. I. (1995). Free radicals and antioxidants in food and in vivo: what they do and how they work. Critical reviews in food science and nutrition. 35. 7-20.
    Hamilton-Miller, J. M. T. (1995). Antimicrobial properties of tea (Camellia sinensis L.). Antimicrobial agents and chemotherapy. 39, 2375–7.
    Higaki, S. (2003). Lipase inhibitors for the treatment of acne. Journal of molecular catalysis b: enzymatic. 22, 377- 84.
    Ho, Walter. K. K., Chen, Z. Y., Huang, Y. Crataegus (Hawthorn). (2004). Crataegus (Hawthorn): Herbal and traditional medicine: molecular aspects of health (pp. 471-87). New York, NY: Marcel Dekker.
    Ikigai, H., Nakae, T., Hara, Y., & Shimamura, T. (1993). Bactericidal catechins damage the lipid bilayer. Biochimica et Biophysica Acta. 1147, 132-6.
    Ingold, K. U. (1968). Inhibition of autoxidation. Advances in chemistry. In: Frank R. Mayo (Eds.). Oxidation of organic compounds. (pp. 296-305). NW, NW: American chemical society.
    Ingham, E., Holland, K. T., Gowland, G. & Cunliffe, W. J. (1981). Partial purification and characterization of lipase (EC 3.1.1.3) from Propionibactedum acnes. Journal of general microbiology. 124, 393-401.
    Jaeger, K. E., Ransac, S., Dijkstra, B. W., Colson, C., van Heuvel, M. & Misset, O.(1994). Bacterial lipases. FEMS microbiology reviews. 15, 29-63.
    Jahan, F. N., Rahman, M. S., Rahman, M. M.,Gibbons, S., Masud, M. M., Sadhu, S. K., Hossain, M., Hasan, C. M., & Rashid, M. A. (2009). Diphenylpropanoids from Quisqualis indica Linn. and their anti-staphylococcal activity. Latin american journal of pharmacy. 28, 279-83.
    Jiang, C. B., Chang, M. J., Wen, C. L., Lin, Y. P. & Hsu, F. L. (2006). Natural products of cosmetics: analysis of extracts of plants endemic to Taiwan for the presence of tyrosinase-inhibitory, melanin-reducing, and free radical scavenging activities. Journal of food and drug analysis. 14, 346-52.
    Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S., & Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of agricultural and food chemistry. 47, 3954-62.
    Karori, S. M., Wachira, F. N., Wanyoko, J. K. & Ngure, R. M. (2007). Antioxidant capacity of different types of tea products. African journal of biotechnology. 6, 2287-96.
    Kleijnen, J., & Knipschild, P. (1992). Ginkgo biloba. The journal-lancet. 340, 1136-9.
    Kumar, B.S.A., Prabhakarn, V. Lakshman, K. Nandeesh, R., Subramanyam, P. Khan, S. Ranganayakalu, D., & Krishna, N.V. (2008). Pharmacognostical studies of Portulaca oleracea Linn. Brazilian journal of pharmacognosy. 18, 527-31.
    Kwon, K. B., Kim, E. K., Shin, B. C., Seo, E. A., Yang, J. Y. & Ryu, D. G. (2003). Herba houttuyniae extract induces apoptotic death of human promyelocytic leukemia cells via caspase activation accompanied by dissipation of mitochondrial membrane potential and cytochrome c release. Experimental & molecular medicine. 35, 91-7.
    Latha, C., Shriram, V. D., Jahagirdar, S. S., Dhakephalkar, P. K. & Rojatkar, S. R. (2009). Antiplasmid activity of acetoxychavicol acetate from Alpinia galanga against multi-drug resistant bacteria. Journal of ethnopharmacology. 123, 522-5.
    Lai, P.K., & Roy, J. (2004). Antimicrobial and chemopreventive properties of herbs and spices. Current medicinal chemistry. 11, 1451-60.
    Lai, S.W., Yu, M.S., Yuen, W.H. & Chang, R.C. (2006). Novel neuroprotective effects of the aqueous extracts from Verbena officinalis Linn. Neuropharmacology. 50, 641-50.
    Lee, J. H., Shim, J. S., Chung, M. S., Lim, S. T. & Kim, K. H. (2009). In vitro anti-adhesive activity of green tea extract against pathogen adhesion. Phytotherapy research : ptr. 23, 460-6.
    Lee, H. H., Lin, C. T. & Yang, L. L. (2007). Neuroprotection and free radical scavenging effects of Osmanthus fragrans. Journal of biomedical science. 14, 819–27.
    Lewis, K. (2001) Riddle of biofilm resistance. Antimicrobial agents and chemotherapy. 45, 999–1007.
    Leu, Y. L., Shi, L. S. & Damu, A. G. (2003). Chemical constituents of Taraxacum formosanum. Chemical & pharmaceutical bulletin. 51, 599-601.
    Leung, L. K., Su, Y., Chen, R., Zhang, Z., Huang, Y., & Chen, Z. Y. (2001). Theaflavins in Black Tea and catechins in green tea are equally effective antioxidants. The journal of nutrition. 131, 2248–51.
    Livrea, M.A. & Tesoriere, L. (2004). Antioxidant activities of prickly pear (Opuntia ficus indica) fruit and its betalains: Herbal and traditional medicine: molecular aspects of health (pp. 537-56). New York, NY: Marcel Dekker.
    Lotito, S. B. & Fragaa, C. G. (1998). (+)-Catechin Prevents Human Plasma Oxidation. Free radical biology and medicine. 24, 435-41.
    Lu, Y. & Foo, L. Y. (2000). Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food chemistry. 68, 81-5.
    Manach, C., Scalbert, A., Morand, C., Rémésy, C. & Jime´nez, L. (2004). Polyphenols: food sources and bioavailability. The american journal of clinical nutrition. 79,727– 47.
    Marples, R. R., Downing, D. T., & Kligman, A. M. (1971). Control of free fatty acids in human surface lipids by Corynebacterium acnes. The Journal of investigative dermatology. 56, 127-31.
    Masuda, T., Inaba, Y., Maekawa, T., Takeda, Y., Tamura, H. & Yamaguchi. H. (2002). Recovery mechanism of the antioxidant activity from carnosic acid quinone, an oxidized sage and rosemary antioxidant. Journal of agricultural and food chemistry. 50, 5863-9.
    Monds, R. D. & O’Toole, G. A. (2009). The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends in microbiology. 17, 73-87.
    Moreno, S., Scheyer, T., Romano, C.S., Vojnov, A. A. (2006). Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free radical research. 40, 223–31.
    Nagajyothi, P. C., Dinakar, N., Suresh, S., Udaykiran, Y., Suresh, C & Damodharam, T. (2010). Effect of industrial effluent on the morphological parameters and chlorophyll content of green gram (Phaseolus aureus Roxb). Journal of environmental biology / academy of environmental biology, India. 30, 385-8.
    Nakamura, Y., Ohto, Y., Murakami, A. & Ohigashi, H. (1998). Superoxide scavenging Activity of Rosmarinic Acid from Perilla frutescens Britton Var. acuta f. viridis Journal of agricultural and food chemistry. 46, 4545–50
    Nishijima, S., Kurokawa, I., Katoh, N. & Watanabe, K.(2000). The bacteriology of acne vulgaris and antimicrobial susceptibility of Propionibacterium acnes and Staphylococcus epidermidis isolated from acne lesions. The Journal of dermatology. 27, 318-23.
    Noda, Y., Anzai, K., Mori, A., Kohno, M., Shinmei, M. & Packer. L. (1997). Hydroxyl and superoxide anion radical scavenging activities of natural source antioxidants using the computerized JES-FR30 ESR spectrometer system. Biochemistry and molecular biology international. 42, 35-44.
    Ofek, I., Hasty, D. L. & Sharon, N. (2003). Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS immunology and medical microbiology. 38 , 181-91.
    Otake, S., Makimura, M., Kuroki, T., Nishihara, Y., & Hirasawa, M. (1991). Anticaries effects of polyphenolic compounds from Japanese green tea. Caries research. 25, 438-43.
    O'Mahony, R., Al-Khtheeri, H., Weerasekera, D., Fernando, N., Vaira, D., Holton, J., & Basset, C. (2005). Bactericidal and anti-adhesive properties of culinary and medicinal plants against Helicobacter pylori. World journal of gastroenterology : WJG. 11, 7499-507.
    O'Toole, G., Kaplan, H.B. & Kolter, R. (2000). Biofilm formation as microbial development. Annual review of microbiology. 54, 49-79.
    Pablo, G., Hammons, A., Bradley, S., & Jr, J. E. F. (1974). Characteristics of the extracellular lipases from Corynebaterium acnes and Staphylococcus epidermis. Journal of investigative dermatology. 63, 231–8.
    Puhvel, S.M., & Reisner, R.M. (1972). Effect of antibiotics on the lipases of Corynebacterium acnes. Archives of dermatology. 106, 45–9.
    Rangkadilok, N., Worasuttayangkurn, L. Bennett, R. N. & Satayavivad, J. (2005). Identification and quantification of polyphenolic compounds in longan (Euphoria longana Lam.) fruit. Journal of agricultural and food chemistry. 53, 1387–92.
    Rice-Evans, C. A., Miller, N. J., & Paganga, G.. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free radical biology & medicine. 20, 933-56.
    Rice-Evans, C., Miller, N., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in plant science. 152-59.
    Roberts, I. (1985). Hydrolysis of 4-Methylumbelliferyl butyrate: a convenient and sensitive fluorescent assay for lipase. Lipids. 20, 244-7.
    Robak, J. & Gryglewski, R. J. (1988). Flavonoids are scavengers of superoxide anions. Biochemical pharmacology. 37, 837-41.
    Roccaro, A. S., Blanco, A. R., Giuliano, F., Rusciano, D.& Enea, V. (2004). Epigallocatechin-gallate enhances the activity of tetracycline in Staphylococci by inhibiting its efflux from bacterial cells. Antimicrobial agents and chemotherapy. 48, 1968-73.
    Salah, N., Miller, N. J., Paganga, G., Tijburg, L., Bolwell, G. P. & Rice-Evans, C. (1995). Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Archives of biochemistry and biophysics. 322, 339-46.
    Sagransky, M., Yentzer, B. A.& Feldman, S. (2009). Benzoyl peroxide: a review of its current use in the treatment of acne vulgaris. Expert opinion pharmacother.10, 2555-62.
    Sakanaka, S. M., Kim, M., Taniguchi, M. & Yamamoto, T. (1989). Antibacterial substances in Japanese green tea extract against Streptococcus mutans, a cariogenic bacterium. Agricultural and biological chemistry. 53, 2307–11.
    Shotipruk, A., Kaufman, P.B., & Wang, H.Y. (2001). Feasibility study of repeated harvesting of menthol from biologically viable Mentha x piperita using ultrasonic extraction. Biotechnology progress.17, 924-8.
    Simões, M., Bennett, R. N. & Rosa, E. A. (2009). Understanding antimicrobial activities of phytochemicals against multidrug resistant. Nature product report. 26,746-57.
    Slifkin, M. & Doyle, R.J. (1990). Lectins and their application to clinical microbiology. Clinical microbiology reviews. 3, 197-218.
    Staat, R. H., Langley, S. D. & Doyle, R. J. (1980). Streptococcus mutans adherence: presumptive evidence for protein-mediated attachment followed by glucan-dependent cellular accumulation. Infection and immunity. 27, 675-81.
    Stehr, F., Kretschmarb, M. Krögera, C., Hubea, B. & Schäfera, W. (2003). Microbial lipases as virulence factors. Journal of molecular catalysis b: enzymatic. 22, 347-55.
    Steinberg, D., Feldman, M., Ofek, I., & Weiss, E. I. (2005). Cranberry high molecular weight constituents promote Streptococcus sobrinus desorption from artificial biofilm. International journal of antimicrobial agents. 25, 247–51.
    Steinhaus, B. & Engelhardt, U. H. (1989). Theaflavins in black tea comparison of the flavognost and HPLC analysis — preliminary in results. Zeitschrift für Lebensmitteluntersuchung und -Forschung A. 188, 509-11.
    Stepanovic´, S. Vukovic´, D. Dakic´, I. Savic´, B.& vabic´-Vlahovic, M Sˇ. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of microbiological methods. 40, 175–9.
    Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S.W. (2003). Antimicrobial properties of basil and its possible application in food packaging. Journal of agricultural and food chemistry. 21, 3197-207.
    Tada, M., Ohkanda, T. & Kurabe. (2010). Syntheses of carnosic acid and carnosol, anti-oxidants in rosemary, from pisiferic acid, the major constituent of sawara. CPB : Chemical & pharmaceutical bulletin.58, 27-9.
    Takano, H., Osakabe, N., Sanbongi, C., Yanagisawa, R., Inoue, K., Yasuda, A., Natsume, M., Baba, S., Ichiishi, E. &Yoshikawa, T. (2004). Extract of Perilla frutescens enriched for rosmarinic acid, a polyphenolic phytochemical, inhibits seasonal allergic rhinoconjunctivitis in humans. Experimental biology and medicine (Maywood, N.J.). 229, 247-54.
    Thomas, J.P., Maiorino, M., Ursini, F., Girotti, A.W. (1990). Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. In situ reduction of phospholipid and cholesterol hydroperoxides. The journal of biological chemistry. 265, 454-61.
    Toyoda, M. & Morohashi, M. (2001). Pathogenesis of acne. Med Electron Microsc 34, 29–40.
    Tsai, P. J., Tsai, T. H., & Ho, S. H. (2007). In vitro inhibitory effects of rosemary extracts on growth and glucosyltransferase activity of Streptococcus sobrinus. Food chemistry. 105, 311–16.
    Tsai, P. J., Wu, S. C. & Cheng, Y. K. (2008). Role of polyphenols in antioxidant capacity of napiergrass from different growing seasons. Food chemistry. 106, 27–32.
    Tsai, T. T., Tsai, T. H., Wu, W. H., Tseng, J. T. P. & Tsai, P. J. (2010). In vitro antimicrobial and anti-inflammatory effects of herbs against Propionibacterium acnes. Food chemistry. 119, 964–8.
    Unkles, S. E. & Gemmell, C. G. (1982). Effect of clindamycin, erythromycin, lincomycin, and tetracycline on growth and extracellular lipase production by propionibacteria in vitro. Antimicrobial agents and chemotherapy. 21, 39-43.
    Vaya, J. & Aviram, M. (2001). Nutritional antioxidants: mechanisms of action, analyses of activities and medical applications. Current medicinal chemistry - immunology, endocrine & metabolic agents. 1, 99-117.
    Van Acker, A. B. E. S., Van Den Berg, D. J., Trompa, M. J. L., Griffioena, D. H., Van Bennekomc, W. P., Van Der Vijgh, W. J. F. & Basta, A. (1996). Structural aspects of antioxidant activity of flavonoids. Free radical biology and medicine. 20, 331-42.
    Wang, K. H., Lin, R. D., Hsu, F. L., Huang, Y. H., Chang, H. C., Huang, C. Y., & Lee, M. H. (2006). Cosmetic applications of selected traditional Chinese herbal medicines. Journal of ethnopharmacology. 106, 353–9.
    Wargovich, M.J., Woods, C., Hollis, D.M., & Mary, E. (2001). Herbals, cancer prevention and health. Journal of nutrition.131, 30348-69.
    Weiss, E. I., Lev-Dor, R., Kashamn, Y., Goldhar, J., Sharon, N. & Ofek, I.(1998) Inhibiting interspecies coaggregation of plaque bacteria with cranberry juice constituent. JADA. 129, 1719–23.
    Worret, W. I. & Fluhr, J. W. (2006). Acne therapy with topical benzoyl peroxide, antibiotics and azelaic acid. Journal of the German society of dermatology : JDDG. . 4, 293-300.
    Zafriri, D., Ofek, I., Adar, R., Pocino, M. & Sharon, N. (1989). Inhibitory activity of cranberry juice on adherence of type 1 and type p fimbriated Escherichia coli to eucaryotic cells. Antimicrobial agents and chemotherapy. 33, 92-8
    Zuo, Y., Chena, H. & Deng, Y. (2002). Simultaneous determination of catechins, caffeine and gallic acids in green, oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta. 57, 307–16

    下載圖示
    QR CODE