簡易檢索 / 詳目顯示

研究生: 謝逸安
Hsieh, Yi-An
論文名稱: 超飽和設計因子篩選方法比較
指導教授: 蔡碧紋
Tsai, Pi-Wen
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 32
中文關鍵詞: 超飽和設計逐步向前法最小絕對值壓縮選擇法重要因子挑選比
英文關鍵詞: Forward Stepwise Selection, LASSO, Dantzig selector, Important Factor Selection Ratio
DOI URL: https://doi.org/10.6345/NTNU202203194
論文種類: 學術論文
相關次數: 點閱:118下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來有許多學者對大量因子的實驗設計感興趣,但是這類實驗可能僅有少數真正重要的因子,採用完全因子設計或傳統的部分因子設計來配置實驗可能不利於成本的控制,此時就可以考慮使用超飽和設計來篩選因子。

    本文首先討論超飽和設計的矩陣建構方法,包含Lin和Wu分別提出的折半法和交互法,並進行比較。接下來介紹逐步向前法、最小絕對值壓縮選擇法(LASSO)以及Dantzig selector三種分析分法應用在超飽和設計的因子篩選上。最後在不同的模擬條件設定下,引入重要因子挑選比比較三種因子篩選方法在超飽和設計表現的優劣,並應用於實例之中。

    In recent years, there are many scholars interested in experimental designs of a large number of factors, but such experiments may only have a few really important factors.
    It is detrimental to cost control if we using full factorial designs or traditional fractional factorial designs to construct these experiments, so we could consider using supersaturated designs in this situation to do factor screening.

    In this article, we first discuss the design matrix construction methods of supersaturated designs, including the split-half method and the interaction method proposed by Lin and Wu, and then compare with them. Next, we introduce forward stepwise selection, LASSO and Dantzig selector as three factor selection methods of supersaturated designs. Finally, we compare the three factor selection methods of supersaturated designs by important factor selection ratio under different simulation conditions, and applied it to real examples.

    誌謝 iii 摘要 v Abstract vii 1 緒論 1 2 超飽和設計建構方法 3 2.1 折半法 4 2.2 交互法 6 2.3 建構方法的比較 7 3 超飽和設計因子篩選方法 11 3.1 逐步向前法 11 3.2 最小絕對值壓縮選擇法(LASSO) 12 3.3 Dantzigselector 14 4 超飽和設計挑選比分析 17 4.1 重要因子挑選比(挑選比) 17 4.2 不同設定的挑選比分析 20 4.2.1 範例條件下的挑選比分析 20 4.2.2 不同設計矩陣建構方法的挑選比分析 22 4.2.3 不同因子數的挑選比分析 23 4.2.4 不同重要因子係數的挑選比分析 26 4.3 挑選比分析的應用 26 5 結論 29 參考文獻 31

    Beattie, S. D., Fong, D. K. H., & Lin, D. K. J. (2002). A two-stage bayesian model selection strategy for supersaturated designs. Technometrics, 44(1), 55–63.
    Booth, K. H. V., & Cox, D. R. (1962). Some systematic supersaturated designs. Technometrics, 4(4), 489–495.
    Box, G. E. P., & Meyer, R. D. (1986). An analysis for unreplicated fractional factorials. Technometrics, 28(1), 11–18.
    Candes, E., & Tao, T. (2007). The dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics, 35(6), 2313–2351.
    Cheng, C.-S. (1997). E(s2)-optimal supersaturated designs. Statistica Sinica, 7(4), 929–939.
    Chipman, H., Hamada, M., & Wu, C. F. J. (1997). A bayesian variable-selection approach for analyzing designed experiments with complex aliasing. Technometrics, 39(4), 372–381.
    Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32(2), 407–499.
    Fang, K.-T., Lin, D. K. J., & Liu, M.-Q. (2003). Optimal mixed-level supersaturated design. Metrika, 58(3), 279–291.
    Li, R., & Lin, D. K. J. (2002). Data analysis in supersaturated designs. Statistics & Probability Letters, 59(2), 135–144.
    Li, W. W., & Wu, C. F. J. (1997). Columnwise-pairwise algorithms with applications to the construction of supersaturated designs. Technometrics, 39(2), 171–179.
    Lin, D. K. J. (1993). A new class of supersaturated designs. Technometrics, 35(1), 28–31.
    Lu, X., & Wu, X. (2004). A strategy of searching active factors in supersaturated screening experiments. Journal of Quality Technology, 36(4), 392–399.
    Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24(2), 227–234.
    Nguyen, N.-K. (1996). An algorithmic approach to constructing supersaturated designs. Technometrics, 38(1), 69–73.
    Phoa, F. K. H., Pan, Y.-H., & Xu, H. (2009). Analysis of supersaturated designs via the dantzig selector. Journal of Statistical Planning and Inference, 139(7), 2362–2372.
    Plackett, R. L., & Burman, J. P. (1946). The design of optimum multifactorial experiments. Biometrika, 33(4), 305–325.
    Satterthwaite, F. E. (1959). Random balance experimentation. Technometrics, 1(2), 111–137.
    Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (methodological), 58(1), 267–288.
    Westfall, P. H., Young, S. S., & Lin, D. K. J. (1998). Forward selection error control in analysis of supersaturated designs. Statistica Sinica, 8(1), 101–117.
    Williams, K. R. (1968). Designed experiments. Rubber Age, 100, 65–71.
    Wu, C. F. J. (1993). Construction of supersaturated designs through partially aliased interactions. Biometrika, 80(3), 661–669.
    Zhang, Q.-Z., Zhang, R.-C., & Liu, M.-Q. (2007). A method for screening active effects in supersaturated designs. Journal of Statistical Planning and Inference, 137(6), 2068–2079.

    下載圖示
    QR CODE