簡易檢索 / 詳目顯示

研究生: 陳俞安
Chen, Yu-An
論文名稱: 高等教育對 STEM 跨域人才培育的想像與實踐-從學生的觀點探析之
Envision the Practice of STEM in Higher Education for Cultivation of Interdisciplinary Talents—Analysis from Students’ Perspectives
指導教授: 甄曉蘭
Chen, Hsiao-Lan
口試委員: 林坤誼
Lin, Kuen-Yi
古建國
Ku, Chien-Kuo
甄曉蘭
Chen, Hsiao-Lan
口試日期: 2023/06/15
學位類別: 碩士
Master
系所名稱: 課程與教學研究所
Graduate Institute of Curriculum and Instruction
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 127
中文關鍵詞: STEM 跨域人才STEM 教育跨領域學程學生經驗課程
英文關鍵詞: interdisciplinary STEM talents, STEM education, interdisciplinary programs, experienced curriculum of students
研究方法: 個案研究法文件分析法訪談法
DOI URL: http://doi.org/10.6345/NTNU202301023
論文種類: 學術論文
相關次數: 點閱:106下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的快速發展,STEM跨域人才的培育成為我國重要的議題。然而,近年台灣出現STEM人才短缺、質量不足的問題。為因應跨域人才的需求,國內有越來越多大專院校成立跨領域學程。雖然有不少研究針對學生的STEM職業興趣進行探討,卻較少有研究以質性的方式,從學生的觀點,了解學生的學習歷程與未來職業想像之間的互動。本研究旨在探討學生在STEM跨領域學程的學習經驗,以期為我國STEM跨域學程之規劃提供方向與指引。本研究的研究目的為探討培育STEM跨域人才學程的規劃理念與推動策略、學生選擇STEM跨域學程的原因與期待、學習歷程與經驗等,以提供學生觀點給STEM跨域學程的大學作為參考。

    本研究以個案研究的方式,透過分析相關文件、訪談學程師生,以多元的視角了解STEM跨域學程的推動及學生的學習歷程。依據研究發現,本研究之結論包括:學程重視學生的專業發展、強調跨域整合的能力;學程定位和學生意見,持續帶動學程制度的修正;能接觸多元背景同儕和修課的彈性,是吸引學生就讀跨域學程的原因;學程提供專題課程和修課彈性,讓學生發展其跨域自主性;學生之間的跨域互動和思維,有助於培養跨域溝通與合作的能力;跨域經驗讓學生對未來的想像更加開放;學程主任和老師的跨域理念,對於學程的發展方向具有關鍵性的影響。依據研究結果,本研究針對我國STEM跨域人才之培育及未來研究,提出啟示與建議。

    With the rapid development of technology, it is imperative, in Taiwan, to cultivate interdisciplinary talents in Science, Technology, Engineering, and Mathematics (STEM). Since Taiwan has been facing shortages and inadequate quality of STEM talent, an increasing number of colleges and universities are starting to construct interdisciplinary programs to meet the demand for cultivating interdisciplinary talents. While numerous studies have explored students’ occupational interests in STEM, few have qualitatively examined the interplay between the learning experiences and future career prospects from the students’ perspectives. This study aimed at exploring the learning experiences of students in interdisciplinary STEM programs with an attempt to obtain implications and suggestions for better planning of such programs in Taiwan. The purposes of this study include (1) to investigate the case university’s design philosophy and implementation strategies of interdisciplinary STEM programs; (2) to understand students’ motives of and expectations for choosing to study in the interdisciplinary STEM programs; (3) to look into students’ learning processes and experiences in the interdisciplinary STEM programs; and (4) to generate students’ perspectives that may serve as a reference for universities and colleges to enhance their interdisciplinary STEM programs.

    This study applied a case study approach, through analysis of related documents and interviews with participated teachers and students, to understand the implementation of interdisciplinary STEM programs and the learning processes and experiences of students from diverse perspectives. Based on the findings, this study concludes that: (1) the interdisciplinary STEM programs of the case university focus on the professional development of students and strive for developing their ability in cross-disciplinary integration; (2) on-going revisions of the program operational mechanism are driven by the positionality of the program and students’ opinions; (3) opportunities for students to interact with peers from diverse backgrounds and the flexibility of course selection are main factors attracting students to attend the interdisciplinary programs; (4) provision of specialized courses and flexible curriculum allow students to develop their interdisciplinary autonomy; (5) interdisciplinary interactions and exchanges among the students help fostering their skills in interdisciplinary communication and cooperation; (6) interdisciplinary experiences stimulate students to have broader imaginings for their future; and (7) the upholding of interdisciplinarity by the program chair and faculty has a crucial impact on the direction of program development. Based on the research findings, this study provides related suggestions not only for the cultivation of interdisciplinary STEM talents in Taiwan but also for future further research in STEM programs.

    第一章 緒論 1 第一節 研究背景及動機 1 第二節 研究目的與研究問題 2 第三節 名詞釋義 3 第四節 研究範圍與限制 4 第二章 文獻探討 7 第一節 STEM教育的發展 7 第二節 STEM跨域人才的培育與高等教育的相關推動策略 17 第三節 影響學生選擇STEM課程與學系的因素 25 第三章 研究設計與實施 33 第一節 研究方法與流程 33 第二節 研究場域與研究者立場 35 第三節 資料蒐集方法與對象 37 第四節 資料管理 41 第五節 研究信實度 42 第六節 研究倫理 43 第四章 研究發現與討論 45 第一節 學程的規劃理念與推動策略 45 第二節 學生的背景與期待 59 第三節 學生的學習歷程與經驗 68 第四節 學生的適應與對未來的規劃 94 第五章 研究結論與建議 105 第一節 結論 105 第二節 建議 108 參考文獻 113 中文部分 113 英文部分 116 附錄:訪談大綱 123

    台北醫學大學跨領域學院(無日期)。學院簡介。2022年11月25日,取自: https://cis.tmu.edu.tw/front/aboutus00/pages.php?ID=dG11X2NpcyZhYm91dHVzMDA=
    行政院主計總處(2010a)。職業名稱及定義:第 2大類-專業人員。2022年 9 月 21 日,取自:https://www.dgbas.gov.tw/public/Attachment/042516433071.pdf
    行政院主計總處(2010b)。職業名稱及定義:第 3大類-技術員及助理專業人員。2022年 9 月 21 日,取自: https://www.dgbas.gov.tw/public/Attachment/042916182671.pdf
    朱繡延(2019)。高級中等學校學生STEM課外學習經驗,自我效能對STEM職業興趣與生涯選擇影響之研究。﹝未出版之碩士論文﹞。國立臺灣師範大學。
    林坤誼(2018)。STEM 教育在台灣推行的現況與省思。青年研究學報,21(1),1-9。
    長庚大學人工智慧學士學位學程暨研究所(無日期)。學程簡介。2022年 4月29日,取自:https://ai.cgu.edu.tw/p/412-1059-187.php
    香港教育局(2016)。推動STEM教育-發揮創意潛能。https://www.edb.gov.hk/attachment/tc/curriculum-development/renewal/STEM_Education_Report_Chi_20170303.pdf
    香港行政長官辦公室(2022)行政長官2022年施政報告。https://www.policyaddress.gov.hk/2022/public/pdf/policy/policy-full_tc.pdf
    胡華勝(2021)。董座憂揣嘸人2/台灣人工智慧論文輸韓、星量子領域看不到他國車尾燈。CTWANT。取自https://www.ctwant.com/article/133590
    張基成、陳怡靜(2018)。機器人跨領域STEM主題式統整課程與任務導向式教學的設計及評鑑。科學教育學刊,26(4),305-331。https://doi.org/10.6173/CJSE.201812_26(4).0002
    張仁家、林癸妙(2019)。美國STEM教育的發展沿革與經驗─以俄亥俄州為例。科技與人力教育季刊,5(4),1-25。
    張芳瑜、林坤誼(2019)。高中生STEM職涯興趣量表之發展與效化。﹝論文發表﹞工程、技術與科技教育學術研討會,89-110。
    張芳瑜(2019)。高中生STEM職涯興趣量表之發展與效化。﹝未出版之碩士論文﹞。國立臺灣師範大學。
    教育部(2017)。高等教育深耕計畫(核定版)。https://www.edu.tw/News_Content.aspx?n=0217161130F0B192&sms=DD4E27A7858227FF&s=48B633D53D143A26
    教育部統計處(2020)。108學年各級教育統計概況分析。取自https://depart.moe.edu.tw/ed4500/News.aspx?n=70EA5C099B0B29A3&sms=8DCFE8CF6FB8173D
    教育部(2022)。配合「高等教育深耕計畫主冊」請一般大學校院配合辦理之重要政策推動事項。https://www.google.com/url?client=internal-element-cse&cx=000408224541097184044:6jy7utedo7r&q=https://sprout.moe.edu.tw/SproutWebAPI/api/WebRelatedAttachment/DownladFile/MpMq2egcWg0%253D&sa=U&ved=2ahUKEwjJ_u-YqKr6AhVXAaYKHdHeCLMQFnoECAYQAQ&usg=AOvVaw14JjWudjGYoU0_cdHtdx9k
    教育部高等教育司(2022)。111 年教育部補助大專校院 STEM領域及女性研發人才培育計畫申請作業須知。https://rdfiles.ym.edu.tw/public/2.%E7%94%B3%E8%AB%8B%E4%BD%9C%E6%A5%AD%E9%A0%88%E7%9F%A5.pdf
    國立臺灣大學(2020)。2019國立臺灣大學-社會責任報告書。https://oir.ntu.edu.tw/ntusdg/wp-content/uploads/2020/06/2019-NTU-USR-Report-CH.pdf
    國立臺灣大學創新設計學院(無日期)。創新領域學士學位學程。2023年3月8日,取自:https://dschool.ntu.edu.tw/tbd/
    國立臺灣師範大學(無日期)。學習科學跨國頂尖研究中心。2022年7月16日,取自:https://www.irels.ntnu.edu.tw/
    國立臺灣師範大學(2021)。國立臺灣師範大學學士班學生修讀雙主修及輔系辦法。https://www.aa.ntnu.edu.tw/xhr/announcements/file/636c866e843f75649a4f4d59/%E4%B8%8B%E8%BC%89.pdf
    國立清華大學資訊工程學系(無日期)。人工智慧與應用基礎學分學程。AI學分學程課程更新。2022年 4月29日,取自: https://dcs.site.nthu.edu.tw/p/406-1174-158124,r7177.php
    國立清華大學清華學院學士班(無日期)。實驗教育方案-簡介與要點。2022年 4月29日,取自: https://ipth.site.nthu.edu.tw/p/412-1462-14021.php#cmb_2197_1
    國立清華大學(2022)。國立清華大學學士班跨領域學習要點。2023 年 3 月 7 日,取自: https://ipth.site.nthu.edu.tw/var/file/462/1462/img/462672762.pdf
    國立成功大學全校不分系學士學位學程(無日期)。學程簡介。2022年 4月29日,取自: http://ccep.ctld.ncku.edu.tw/site/about
    國立政治大學創新國際學院(無日期)。學院特色。2022年11月25日,取自: https://www.ici.nccu.edu.tw/zh-hant/about-us/program-features/
    國立台灣科技大學(無日期a)。教育部計畫徵求-補助「生醫產業與新農業跨領域人才培育計畫」。2023 年 3 月 7 日,取自:https://www.rd.ntust.edu.tw/p/16-1055-75616.php?Lang=zh-tw
    國立台灣科技大學(無日期b)。教育部計畫徵件-110年度「智慧製造跨域整合人才培育聯盟計畫」。2023 年 3 月 7 日,取自:https://www.rd.ntust.edu.tw/p/406-1055-88902,r19.php?Lang=zh-tw
    國立台灣科技大學(無日期c)。教育部計畫徵件-110年度「智慧製造跨域整合人才培育聯盟計畫」。2023 年 3 月 7 日,取自:https://www.rd.ntust.edu.tw/p/406-1055-89985,r84.php?Lang=zh-tw
    國家科學及技術委員會(2022年5月18日)。112 年度「原子能科技學術合作研究計畫」徵求公告。2023 年 3 月 7 日,取自:https://www.nstc.gov.tw/nstc/attachments/495a1d06-85cb-414c-ab34-2c25afc2c323
    國家發展委員會(2021)。110-112年重點產業人才供需調查及推估。2023 年 3 月 8 日,取自:https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzE4L3JlbGZpbGUvNjAzNy85NTEwLzkxN2I0ZDk4LTRkNzAtNDk0OC1hNDM3LTVhMmI4MGVkNDQ0Ni5wZGY%3d&n=MTEwLTExMuW5tOmHjem7nueUoualreS6uuaJjeS%2bm%2bmcgOiqv%2bafpeWPiuaOqOS8sCgxMDnlubTovqbnkIbmiJDmnpzlvZnmlbTloLHlkYopLnBkZg%3d%3d&icon=..pdf
    楊亞平(2015)。美國、德國與日本中小學STEM教育比較研究。外國中小學教育,8,23-30。
    潘慧玲(2003)。社會科學研究典範的流變。教育研究資訊,11(1),111-143。
    賴昭穎、簡永祥(2021年5月5日)。國發會調查:未來3年 AI應用人才最缺。聯合新聞網。https://udn.com/news/story/7238/5434127
    Park & Glenn(2020)。2030世界未來報告書:區塊鏈、AI、生技與新能源革命、產業重新洗牌,接下來10年的工作與商機在哪裡?(宋佩芬譯)。高寶。(原著出版於2019年)
    Aikens, M. L. (2020). Meeting the needs of a changing landscape: Advances and challenges in undergraduate biology education. Bulletin of Mathematical Biology, 82(5), 1-20.
    Amarnani, R. K., Garcia, P. R. J. M., Restubog, S. L. D., Bordia, P., & Bordia, S. (2018). Do You Think I’m Worth It? The Self-Verifying Role of Parental Engagement in Career Adaptability and Career Persistence Among STEM Students. Cultural Geographies, 26(1), 161–164. https://doi.org/10.1177/14744740211057544
    Anderson, M. K., Anderson, R. J., Tenenbaum, L. S., Kuehn, E. D., Brown, H. K., Ramadorai, S. B., & Yourick, D. L. (2019). The benefits of a near-peer mentoring experience on STEM persistence in education and careers: A 2004-2015 study. Journal of STEM Outreach, 2(1), 1-11.
    Becker, K. H., & Park, K. (2011). Integrative approaches among science, technology, engineering, and mathematics (STEM) subjects on students’ learning: A meta-analysis. Journal of STEM education: Innovations and research, 12(5), 23-37.
    Belser, C. T., Prescod, D. J., Daire, A. P., Dagley, M. A., & Young, C. Y. (2018). The Influence of Career Planning on Career Thoughts in STEM‐Interested Undergraduates. The Career Development Quarterly, 66(2), 176-181.
    Blustein, D. L., Barnett, M., Mark, S., Depot, M., Lovering, M., Lee, Y., ... & DeBay, D. (2013). Examining urban students’ constructions of a STEM/career development intervention over time. Journal of Career Development, 40(1), 40-67.
    Boix Mansilla, V., Miller, W. C., & Gardner, H. (2000). On disciplinary lenses and interdisciplinary work, Interdisciplinary curriculum: Challenges to implementation (17-38). Teachers Colleage Press.
    Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and engineering teacher, 70(1), 30.
    Christensen, R., Knezek, G., & Tyler-Wood, T. (2015). A retrospective analysis of STEM career interest among mathematics and science academy students. International Journal of Learning, Teaching and Educational Research, 10(1) , 45-58.
    Committee on STEM Education. (2018). Charting a course for success: America’s strategy for STEM education. Executive Office of the President.
    Dorph, R., Bathgate, M. E., Schunn, C. D., & Cannady, M. A. (2018). When I grow up: the relationship of science learning activation to STEM career preferences. International Journal of Science Education, 40(9), 1034-1057.
    Habig, B., Gupta, P., Levine, B., & Adams, J. (2020). An informal science education program’s impact on STEM major and STEM career outcomes. Research in Science Education, 50(3), 1051-1074.
    Havard University (n.d.a). Electrical Engineering. Retrieved September 17, 2022, from https://advising.college.harvard.edu/electrical-engineering
    Havard University (n.d.b). Mechanical Engineering. Retrieved September 17, 2022, from https://advising.college.harvard.edu/mechanical-engineering
    Herbert, K. G., Marlowe, T. J., Leune, K., Siegfried, R. M., & Wilmanski, J. (2021). Interdisciplinary STEM Undergraduate Programs and the Effectiveness of Computing Competencies within the Curriculum. In 2021 IEEE Integrated STEM Education Conference (ISEC) (pp. 280-283). IEEE.
    Hernandez, P. R., Hopkins, P. D., Masters, K., Holland, L., Mei, B. M., Richards-Babb, M., ... & Shook, N. J. (2018). Student integration into STEM careers and culture: A longitudinal examination of summer faculty mentors and project ownership. CBE—Life Sciences Education, 17(3), ar50.
    Huang, Z., Kougianos, E., Ge, X., Wang, S., Chen, P. D., & Cai, L. (2021). A Systematic Interdisciplinary Engineering and Technology Model Using Cutting-Edge Technologies for STEM Education. IEEE Transactions on Education, 64(4), 390-397.
    Jelks, S. M., & Crain, A. M. (2020). Sticking with STEM: Understanding STEM career persistence among STEM bachelor’s degree holders. The Journal of Higher Education, 91(5), 805-831.
    Kendricks, K. D., Arment, A. A., Nedunuri, K. V., & Lowell, C. A. (2019). Aligning Best Practices in Student Success and Career Preparedness: An Exploratory Study to Establish Pathways to STEM Careers for Undergraduate Minority Students. Journal of Research in Technical Careers, 3(1), 27-48.
    Kier, M. W., & Blanchard, M. R. (2021). Eliciting students’ voices through STEM career explorations. International Journal of Science and Mathematics Education, 19(1), 151-169.
    Kitchen, J. A., Sonnert, G., & Sadler, P. M. (2018). The impact of college‐and university‐run high school summer programs on students’ end of high school STEM career aspirations. Science Education, 102(3), 529-547.
    Laracy, J. R., Marlowe, T. J., & Buonopane, G. J. (2017)An Experiment in Interdisciplinary STEM Education: Insights from the Catholic Intellectual Tradition. Journal of Systems, Cybernetics, and Informatics, submitted.
    Lawless, K. A., Brown, S. W., & Boyer, M. A. (2016). Educating students for STEM literacy: GlobalEd 2. Technology, Theory, and Practice in Interdisciplinary STEM Programs: Connecting STEM and Non-STEM Approaches, 53-82.
    Massachusetts Institute of Technology (n.d.a). Interdisciplinary Undergraduate Degrees. Retrieved September 17, 2022, from http://catalog.mit.edu/interdisciplinary/undergraduate-programs/degrees/
    Massachusetts Institute of Technology (n.d.b). Minor in Energy Studie
    s. Retrieved September 17, 2022, from
    http://catalog.mit.edu/interdisciplinary/undergraduate-programs/minors/energy-studies/energy-studies.pdf#:~:text=The%20Energy%20Studies%20Minor%20complements%20the%20deep%20expertise,four%20core%20areas%2C%20plus%2024%20units%20of%20electives.
    Organisation for Economic Co-operation and Development (OECD). (2006). Assessing scientific, reading and mathematical literacy: A framework for PISA 2006. Paris: OECD.
    Prescod, D. (2014). The Influence Of A Career Planning Stem Explorations Course On Vocational Maturity, Career Decidedness And Career Thoughts For Undergraduate Students.
    Robnett, R. D., & Leaper, C. (2013). Friendship groups, personal motivation, and gender in relation to high school students' STEM career interest. Journal of Research on Adolescence, 23(4), 652-664.
    Rottinghaus, P.J., Falk, N.A. and Park, C.J. (2018), Career Assessment and Counseling for STEM: A Critical Review. The Career Development Quarterly, 66: 2-34. https://doi.org/10.1002/cdq.12119
    Sadler, P. M., Sonnert, G., Hazari, Z., & Tai, R. (2012). Stability and volatility of STEM career interest in high school: A gender study. Science education, 96(3), 411-427.
    Sahin, A., Ekmekci, A., & Waxman, H. C. (2018). Collective effects of individual, behavioral, and contextual factors on high school students’ future STEM career plans. International Journal of Science and Mathematics Education, 16(1), 69-89.
    Salloum, M., Jeske, D., Ma, W., Papalexakis, V., Shelton, C., Tsotras, V., & Zhou, S. (2021). Developing an interdisciplinary data science program. In Proceedings of the 52nd ACM Technical Symposium on Computer Science Education (509-515). Association for Computing Machinery.
    Scragg, B., Davis, T., Norton, M., Mishra, P., & Anbar, A. (2021). Designing the future of undergraduate STEM education: An inter-institutional and interdisciplinary approach. In Society for Information Technology & Teacher Education International Conference (pp. 827-836). Association for the Advancement of Computing in Education (AACE)
    Shin, S., Ha, M., & Lee, J. K. (2016). The development and validation of instrument for measuring high school students' STEM career motivation. Journal of the Korean Association for Science Education, 36(1), 75-86.
    Stanford University (n.d.a). Stanford Interdisciplinary. Retrieved September 17, 2022, from https://www.bing.com/ck/a?!&&p=f81e94ea963ad3b0JmltdHM9MTY2MzgwNDgwMCZpZ3VpZD0yNzUzYmRiZi1iMDU2LTZlYTEtMDAxMC1hZDNiYjExMDZmZjAmaW5zaWQ9NTE2NA&ptn=3&hsh=3&fclid=2753bdbf-b056-6ea1-0010-ad3bb1106ff0&u=a1aHR0cHM6Ly9pbnRlcmRpc2NpcGxpbmFyeS5zdGFuZm9yZC5lZHUv&ntb=1
    Stanford University (n.d.b). Program in Science, Technology & Society. Retrieved September 17, 2022, from https://www.bing.com/ck/a?!&&p=870ea9217edc0351JmltdHM9MTY2MzgwNDgwMCZpZ3VpZD0yNzUzYmRiZi1iMDU2LTZlYTEtMDAxMC1hZDNiYjExMDZmZjAmaW5zaWQ9NTM4NQ&ptn=3&hsh=3&fclid=2753bdbf-b056-6ea1-0010-ad3bb1106ff0&u=a1aHR0cHM6Ly9zdHMuc3RhbmZvcmQuZWR1L2Fib3V0L2Fib3V0LW91ci1zdHMtcHJvZ3JhbQ&ntb=1
    Super, D.E. (1977), Vocational Maturity in Mid-Career. Vocational Guidance Quarterly, 25. 294-302. https://doi.org/10.1002/j.2164-585X.1977.tb01242.x.
    Thiry, H., Laursen, S. L., & Hunter, A. B. (2011). What experiences help students become scientists? A comparative study of research and other sources of personal and professional gains for STEM undergraduates. The Journal of Higher Education, 82(4), 357-388.
    U.S. Department of Commerce (2017). STEM jobs: 2017 update. Retrieved September 21, 2022 from https://www.commerce.gov/sites/default/files/migrated/reports/stem-jobs-2 017-update.pdf
    U.S. Department of Education, Office of Innovation and Improvement. (2016). STEM 2026: a vision for innovation in STEM education. Washington, DC: Author
    Washington Office of Superintendent of Public Instruction (n.d.). STEM Literacy. Retrieved February 1, 2022, from https://www.k12.wa.us/student-success/career-technical-education-cte/program-study-career-clusters-and-career-pathways/science-technology-engineering-mathematics-stem
    Wegemer, C. M., & Eccles, J. S. (2019). Gendered STEM career choices: Altruistic values, beliefs, and identity. Journal of Vocational Behavior, 110, 28-42.

    下載圖示
    QR CODE