簡易檢索 / 詳目顯示

研究生: 潘享莨
Pan, Xiang-Liang
論文名稱: 光耦極阱中的銣原子基態雷射冷卻
Ground State Laser Cooling of Rubidium Atoms in an Optical Dipole Trap
指導教授: 吳文欽
Wu, Wen-Chin
張銘顯
Chang, Ming-Shien
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 50
中文關鍵詞: 雷射冷卻次都卜勒冷卻光學冷卻拉曼側帶冷卻光偶極阱
英文關鍵詞: Laser cooling, sub­-Doppler cooling, Raman sideband cooling, op­tical dipole trap
DOI URL: http://doi.org/10.6345/NTNU202001406
論文種類: 學術論文
相關次數: 點閱:110下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 形成冷原子的玻色­愛因思坦凝結 (Bose­Einstein condensates, BEC), 需要採用不同技術依序將原子從室溫 300 K 冷卻到目標溫度數百 nK。 其中次都卜勒冷卻的階段尤為關鍵,一般在此階段的最後會藉由蒸發 冷卻的方式將原子降溫到 BEC 的狀態。蒸發致冷的原理是丟棄動能較 高的原子,代價則是使得原子氣體裏的原子數目變少。若在此之前, 可以透過光學方法,將溫度預冷至數千或數百 nK,提高相空間密度 (phase space density),就能減少蒸發冷卻過程中消耗掉的原子,使得原 子數大幅增加,以利於更快速、有效地達成 BEC。 本實驗論文研究原子基態雙光子冷卻方法,尤其是拉曼側帶冷卻方法 為主,並比較不同光學冷卻方法的結果。論文介紹實驗架設,包含外 腔雷射的組建、磁光阱架設、拉曼側帶冷卻的實驗架設,然後比較次 都卜勒冷卻的灰色光學糖漿冷卻、以及拉曼側帶冷卻。

    To achieve atomic Bose­Einstein condensates (BEC) , several cooling techniques are required in different stages of the cooling process. From room tamperature 300 K to hundreds of micro K, we use magnetic optical trapping and the involved laser cooling technique is referred as Doppler cooling. To further reduce the temperature of cold atoms, sub­Doppler cooling is crutial. In the end of this stage, usually evaporation method is applied. In this pro­ cess, the temperature is reduced in the expense of atom number loss. If if we could use an optical cooling method which can reduce the temperature to few micro K or few hundred nK, as well as increasing the phase space den­ sity, then the process of producing BEC would become more efficient and the atom number after evaporative cooling can be larger.
    In this thesis, the cooling result of different ground­state two­photon laser optical cooling methods are studied. The preparation of laser source is de­ scribed, and sub­Doppler cooling methods, i.e., gray molasses cooling and Raman sideband cooling methods are studied.

    中文摘要 iii Abstract v 第一章 簡介 1 第二章 基態原子冷卻原理 3 2.1雷射冷卻 3 2.1.1 都卜勒冷卻 3 2.1.2 次都卜勒冷卻 5 2.2雙光子躍遷 6 2.2.1 光學自透明效應(Electromagnetically induced transparency,EIT) 9 2.2.2 拉曼散射與側帶結構形成原因 11 2.3拉曼側帶冷卻機制 14 2.3.1 簡併拉曼躍遷(degenerate Raman transition) 14 2.3.2 拉曼光束與光學晶格(optical lattice) 14 2.3.3 計算光學晶格的位能勢 17 2.3.4 回泵雷射(Repumping beam) 20 第三章 實驗架設 23 3.1銣­87(87Rb)簡介 23 3.2 拉曼躍遷與光學晶格架設 24 3.2.1 拉曼光源製備 24 3.2.2 光學晶格(optical lattice)的架設 26 3.2.3 拉曼光束參數與光學晶格位能阱深 27 3.3回泵雷射的架設 28 3.3.1 外腔雷射(external-­cavity diode laser, ECDL) 28 3.3.2 雷射光路架設 30 3.4磁場 34 3.5 真空與磁光阱(magnetic optical trap, MOT)架設簡介 35 第四章 實驗結果與討論 37 4.1加入2D+MOT提升捕捉原子的效率 37 4.2 MOT實驗結果 37 4.2.1 MOT的生命週期(lifetime) 39 4.3 GMC實驗結果 40 4.4以微波校正磁場結果 40 4.5 RSC實驗結果 43 第五章 討論與總結 45 5.1討論 45 5.1.1 RSC在不同磁場條件下的量測結果 45 5.1.2 RSC光學晶格是否作用 45 5.1.3 未能看到預期結果的可能原因 46 5.2結論 46 Bibliography 49

    [1] J. R. A. A. Alban Urvoy, Zachary Vendeiro and V. Vuletić. Direct laser cooling to bose­einstein condensation in a dipole trap. Phys. Rev. Lett., 122(203202), 2019.

    [2] P. Arora, S. Purnapatra, A. Acharya, R. Kumar, and A. Sen Gupta. Measurement of temperature of atomic cloud using time­of­flight technique. MAPAN­Journal of Metrology Society of India, 27:31–39, 03 2012.

    [3] J. D.­R. G. G. Cohen­Tannoudji, C. Atom­photon interactions: basic process and applications. Wiley­VCH, Weinheim, 2004.

    [4] D. F. S. David J. Griffiths. Introduction to Quantum Mechanics. Cambridge Uni­ versity Press, 2018.

    [5] A. Einstein. Quantentheorie des einatomigen idealen gases. Königliche Preußische Akademie der Wissenschaften, pages 261–267, 7 1924.

    [6] M.R.A.N.J.v.D.D.S.D.D.M.K.K.B.Davis,M.­O.MewesandW.Ket­ terle. Bose­einstein condensation in a gas of sodium atoms. Physical Review Letters, 75:3969–3973, 11 1995.

    [7] J. Karlsson. Cerium as a quantum state probe for rare ­earth qubits in a crystal.PhD thesis, 11 2015.

    [8] M. R. M. C. E. W. E. A. C. M. H. Anderson, J. R. Ensher. Observation of bose­ einstein condensation in a dilute atomic vapor. Science, 269:198–201, 7 1995.

    [9] M. S. Z. Marlan O. Scully. Quantum optics. Cambridge University Press, 1997.

    [10] C. Ming­Shien. Coherent Spin Dynamics of a Spin­1 Bose­Einstein Condensate. PhD thesis, 5 2006.

    [11] D.P.P.Lambropoulos.FundamentalsofQuantumOpticsandQuantumInformation. Berlin; New York: Springer., 2007.

    [12] R. P. E. Prince, R.C.; Frontiera. Stimulated raman scattering: From bulk to nano. Chem. Rev., 117((7)):5070−5094, 2017.

    [13] M. M. S. Z. Scully. Quantum optics. Cambridge University Press, Cambridge, 1 edition, 1997.

    [14] D. A. Steck. “rubidium 87 d line data,”. 23 December 2010.

    [15] P. Zeeman. Doublets and triplets in the spectrum produced by external magnetic forces. Philosophical Magazine., 5th series.(44(266)):55–60, 1897.

    [16] 孫立安. 銣原子玻色愛因斯坦凝結之自旋動力學 Coherent spin dynamics of
    87Rb Bose gas. PhD thesis, 8 2016.

    [17] 黃超群、吳文欽. 波色凝結子在一維光晶格中的聲子行為. 物理雙月刊, 廿七 卷 (二期):390–394, 2005.

    下載圖示
    QR CODE