簡易檢索 / 詳目顯示

研究生: 陳麗奾
Li-Shien Chen
論文名稱: 在未設限環境下車牌的定位與辨識
Localization and Recognition of Vehicle License Plates
指導教授: 陳世旺
Chen, Sei-Wang
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 67
中文關鍵詞: 車牌辨識、彩色邊線偵測、模糊圖、OCR、自組型類神經網路
英文關鍵詞: Recognition of vehicle license plates, Color edges detection, Fuzzy maps, OCR, Self-organizing neural networks
論文種類: 學術論文
相關次數: 點閱:295下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以複雜環境背景的影像為考量對象,提出一套車牌自動辨識的技術。先前已有很多方法被運用於有限制環境的條件下,如車行有固定路線之背景固定的情況、受限制的照度環境等,而我們所提的方法可在影像中偵測任意方位、位置和大小的車牌,更甚者,車牌影像可以是在任意天候及照度情況下取得的,也可以包含錯綜複雜的背景。我們的方法包括兩個主要步驟:車牌定位與車號辨識。在車牌定位部份,利用模糊集合理論和色彩理論,結合車牌的色彩(色調、飽和度及明度)和邊線兩類特徵,以偵測影像中各種類型的車牌。在車號辨識部份,則引進類神經網路學科來實作。實驗結果展示令人滿意的辨識率,進而證明本文所提的技術之可應用性。

    In this thesis, we present a technique for automatic recognition of vehicle license plates from images of complex scenes. Many previous approaches were applied to the scene images having settled backgrounds, or being taken under restricted illumination conditions, or both. The proposed approach will be able to detect vehicle plates with discretional orientations, positions, and sizes in images. Furthermore, scene images can be taken under arbitrary weather and illumination conditions and may contain intricate backgrounds. Our approach consists of two major steps: the localization of car plates and the recognition of license numbers. Both the disciplines of fuzzy sets and neural networks are introduced to implement the steps. Experimental results demonstrating satisfactory recognition rates reveal the applicability of the proposed technique.

    表目錄 iii 圖目錄 iv 第一章 緒論 1-1 1.1. 研究動機 1-1 1.2. 重要性 1-1 1.3. 相關研究 1-2 1.3.1. 車牌定位 1-3 1.3.2. 車號辨識 1-7 1.4. 論文的結構 1-9 第二章 車牌辨識系統 2-1 2.1. 車牌種類和規格 2-1 2.2. 系統架構 2-3 2.3. 車牌定位子系統 2-5 2.4. 車號辨識子系統 2-8 第三章 車牌定位技術 3-1 3.1. 色彩轉換 3-1 3.2. 彩色邊線偵測 3-3 3.3. 模糊隸屬函數 3-5 3.3.1. 之隸屬函數(H) 3-5 3.3.2. 之隸屬函數(S) 3-6 3.3.3. 之隸屬函數(I) 3-9 3.3.4. 之隸屬函數(E) 3-10 3.4. 模糊整合 3-11 3.5. 車牌區域擷取 3-13 第四章 車號辨識技術 4-1 4.1. 模糊二元化 4-1 4.2. 字元萃取 4-3 4.3. 字元初分類 4-5 4.4. 自組型類神經網路之字元辨認 4-7 4.4.1. 自組型類神經網路 4-7 4.4.2. MSOM的建構與學習 4-9 4.4.3. 字元辨識 4-12 4.5. 字元再確認 4-13 第五章 實驗 5-1 5.1. 車牌定位之實驗結果 5-3 5.2. 車號辨識之實驗結果 5-10 第六章 結論 6-1 附錄A:現行之車牌相關規定 A-1 參考文獻 B-1

    [1] Intelligent Transportation Systems (ITS), http:// www.iot.gov.tw/its/, 1999.
    [2] American Traffic Systems (ATS), http://www. traffic .com/, 1999.
    [3] IMPS, http://www.singapore.com/optasia/, 1999.
    [4] KRDL, http://www.krdl.org.sg/RND/transport/projects index.html, 1999.
    [5] http://www.cs.ust.hk/~cmlee/veconnew/vecon_ products_velin.html, 1999.
    [6] Automatic Number Plate Recognition (ANPR) (CARINA),
    http://www.fornix.com/, 1999.
    [7] Computer system for car license plate recognition (Rossi-MegaCar),
    http://cebit.on.ru/rossi/rossie.htm , 1999.
    [8] Discussion Group for Vehicle Number Plate Recognition,
    http://www.utad.pt/numberplate/, 1999.
    [Bru98] Ter Brugge M.H., Stevens J.H., Nijhuis J.A.G., Spaanenburg L., “License plate recognition using DTCNNs,” 1998 Fifth IEEE International Workshop on Cellular Neural Networks and Their Applications Proceedings, pp. 212-217, 1998.
    [Che98] L. S. Chen, C. Y. Fang, K. E. Chang, S. W. Chen, and S. Cherng, “Automatic inspection of IC labels,” Chinese CVGIP 1998, Wu-Lyne, Taipei,Taiwan, pp. 136-143, 1998.
    [Cow95] J. R. Cowell, “Syntactic pattern recognizer for vehicle identification numbers,” Image and Vision Computing Vol. 13, No. 1, pp. 13-19, February 1995.
    [Dra97] S. Draghici, “A neural network based artificial vision system for licence plate recognition,” International Journal of Neural Systems, Vol. 8, pp. 113-126, February 1997.
    [Fag92] A. Faghri, and J. Hua, “Evaluation of artificial neural networks applications in transportation engineering”, the 71th Annual Meeting of the Transportation Research Board, 1992.
    [Her97] X. F. Hermida, F. M. Rodrìguez, J. L. F. Lijó, F. P. Sande, and M. P. Iglesias, “A system for the automatic and real time recognition of V.L.P.'s (Vehicle Licence Plate),” Lecture Notes in Computer Science, Vol. 1311 , pp. 552 – 558, 1997.
    [Hun88] K. C. Hung, C. N. Shyi, J. Y. Lee, and T. C. Lee, “Robot location determination in a complex environment by multiple marks,” Pattern Recognition, Vol. 21, No. 6, pp. 567-580, 1988.
    [Hsu98] Y. T. Hsu, C. B. Lin, S. C. Mar, and S. F. Su. “ High noise vehicle plate recognition using grey system,” Journal of Grey Systems, Vol.10, No.3, pp.193-208, Publisher: Sci-Tech Information Services, UK. , 1998.
    [Kim96] S. K. Kim, D. W. Kim, and H. J. Kim, “ A recognition of vehicle license plate using a genetic algorithm based segmentation,” Image Processing, 1996. Proceedings., International Conference on Volume: 1 , Vol. 2, pp. 661 -664, 1996.
    [Koh90] T. Kohonen, “The Self-Organizing Map,” Proceedings of IEEE, vol. 78, pp. 1464-1480, 1990.
    [Kri94] R. Krishnapuram and J. M. Keller, “Fuzzy set theoretic approach to computer vision: an overview,” in Fuzzy Logic Technology and Applications, Ed. By R. J. Marks II, IEEE Inc., New York City, pp. 25-32, 1994.
    [Liu96] X. Liu, S. Tan, and S. H. Ong, “Fuzzy pyramid scheme for distorted object recognition”, Pattern Recognition, Vol. 29, No. 10, pp. 1631-1646, 1996.
    [Lis93] F. Lisa, J. Carrabina, C. P. Vicente, N. Avellana, and E. Valderrama, “Two-bit weights are enough to solve vehicle license number recognition problem”, IEEE International Conference on Neural Networks, Vol. 3, pp. 1242 –1246, 1993.
    [Lot90] R. A. Lotufo, A. D. Morgan, and A. S. Johnson, “Automatic number-plate recognition,” IEE Colloquium on Image Analysis for Transport Applications, pp. 6/1 -6/6, 1990.
    [Nij95] Nijhuis J.A.G., Ter Brugge M.H., Helmholt K.A., Pluim J.P.W., Spaanenburg L., Venema R.S. Westenberg M.A., “Car license plate recognition with neural networks and fuzzy logic,” IEEE International Conference on Neural Networks, Vol. 5, pp. 2232-2236, 1995.
    [Pal94] S. K. Pal, “Fuzzy sets in image processing and recognition,” in Fuzzy Logic Technology and Applications, Ed. By R. J. Marks. II, IEEE Inc., New York City, pp. 33-40, 1994.
    [Par98] Parisi R., Di Claudio E.D., Lucarelli G., Orlandi G.," Car plate recognition by neural networks and image processing," Proceedings of the 1998 IEEE International Symposium on Circuits and Systems(ISCAS '98), Vol. 3, pp. 195-198, 1998.
    [Poo95] J.C.H. Poon, M. Ghadiali, G. M. T. Mao, and L. M. Sheung, “A robust vision system for vehicle licence plate recognition using grey-scale morphology,” Proceedings of the IEEE International Symposium on Industrial Electronics(ISIE '95), Vol. 1, pp. 394 –399, 1995.
    [Raf92] Rafael C. Gonzalez and Richard E. Woods, “Digital image processing,” pp. 492-493, 1992.
    [吳98] 吳孟璁,“車輛牌照自動辨識系統”,淡江大學資訊工程研究所,碩士論文,台北,民國八十七年六月。
    [李79] 李添貴,“車牌自動辨識系統”,機械工業雜誌79年5月號,pp. 196-205。
    [馬86] 馬西聰,“利用灰色關聯度辨識車牌字母的研究”,碩士論文,電機工程技術研究所,國立台灣工業技術學院,民國86年。
    [張96] 張銘豪,“利用分割辨識方法之英文數字辨識系統”,碩士論文,資訊工程研究所,國立中山大學,民國85年。
    [許82] 許添本、龍天立、張學孔,“自動化影像處理應用於車輛分類之研究”,交通部運輸研究所專題計畫,民國82年。
    [賴81] 賴幼仙, “任意角度車牌之辨認”,碩士論文,資訊及電子工程研究所,國立交通大學,民國81年。
    [龔79] 龔韻強,“實用的車牌號碼數字辨識法則”,機械工業雜誌79年5月號,pp. 206-213。

    QR CODE