簡易檢索 / 詳目顯示

研究生: 劉東昇
Liu, Tung-Sheng
論文名稱: 龍門式定位平台之同動控制系統設計與實現
Design and Implementation of Synchronous Control System for Gantry Position Stage
指導教授: 陳瑄易
Chen, Syuan-Yi
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 127
中文關鍵詞: 龍門式定位平台雙平行線型馬達同動控制機率型類神經模糊網路分數階積分滑動模式控制智慧型分數階積分滑動模式控制
英文關鍵詞: Gantry Position Stage, Parallel Linear Motors, Synchronous Control, Probabilistic Fuzzy Neural Network, Fractional Order Sliding-Mode Control, Intelligent Fractional Order Integral Sliding-Mode Control
DOI URL: https://doi.org/10.6345/NTNU202203535
論文種類: 學術論文
相關次數: 點閱:280下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是以個人電腦端為基礎,針對龍門式定位平台發展具高精密度與高強健性之控制系統以達到平台之同動控制。本論文採用的龍門式定位平台是由兩台互相平行的永磁線型同步馬達耦合一台垂直的永磁線型同步馬達所組成的。因此雙平行線型馬達間的同動控制成為目前龍門式定位平台控制的重大課題。本論文首先針對單軸進行精密控制,1.提出機率型模糊類神經網路控制系統。雖然此控制器經由參數學習能有效進行控制,但由於未知的系統動態,參數須經由好幾次迭代學習才能得到正確之控制效果。因此本論文進一步提出2.自我演化機率型模糊類神經網路控制系統,使用參數學習與架構學習同時進行,目的為加速系統追隨誤差之收斂速度。接著本論文以滑動模式控制為基礎,3.提出分數階積分型滑動模式控制系統進行改良傳統滑動模式暫態響應。為了進一步提升強健性,本論文最後提出4.智慧型分數階積分滑動模式控制系統,使用機率型模糊類神經網路直接對系統的不確定項進行估測。基於各種良好之控制基礎,在同動控制方面,本論文採用以Lagrange方程式推導三自由度龍門動態模型,並以此模型為基礎,發展智慧型分數階積分滑動模式控制系統達到同動控制。上述控制系統均實現在個人電腦,最後由實驗證明設計之控制理論有效性與可行性。

    The objective of this thesis is to develop and implement personal computer (PC) based high precision and robust synchronous control systems for a gantry position stage. The adopted gantry position stage is composed of two parallel permanent magnet linear synchronous motors (PMLSMs) in X-axis and one PMLSM in Y-axis. Currently, the synchronous control of the parallel linear motors has become a challenge in the gantry position stages. In this thesis, a probabilistic fuzzy neural network control (PFNN) is proposed to control the position of a single PMLSM first. Though the PFNN can control the PMLSM accurately, the learning ability is incapable of dealing with the serious uncertainties in the control process. Thus, a self-organizing probabilistic fuzzy neural network control (SOPFNN), which consists of the structure learning and parameter learning algorithms, is further proposed to improve the control performance and convergence speed of PFNN. Moreover, a fractional order integral sliding-mode control (FISMC) using fractional operator is developed to perform better transient response compared with the conventional sliding-mode control (SMC). Furthermore, to improve the robustness of the FISMC system, an intelligent fractional order integral sliding-mode control (IFISMC) with PFNN based online uncertainty estimation is proposed. With regard to the synchronous control of parallel PMLSMs, a Lagrange’s equation based three-degree-of-freedom (3-DOF) dynamic model for gantry position stage is derived first. Then, the developed IFISMC system is applied to achieve high performance synchronous control based on 3-DOF dynamic model. All the proposed control strategies are realized via a PC. Finally, some experimental results are illustrated to show the effectiveness and validity of the proposed control approaches.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.3 研究目的 6 1.4 研究方法 6 1.5 研究架構 8 第二章 龍門式定位平台介紹 9 2.1 永磁線型同步馬達之基本介紹 9 2.2 單軸永磁線型同步馬達之工作原理 11 2.3 單軸永磁線型同步馬達之驅動系統 13 2.4個人電腦控制介面 14 2.5 以個人電腦為基礎之龍門式定位平台控制系統 16 2.6龍門式定位平台控制系統之軟體發展流程介紹 17 2.7實驗設置介紹 18 第三章 基於機率型模糊類神經網路控制之單軸永磁線型同步馬達控制系統 20 3.1 簡介 20 3.2機率型模糊類神經網路位置控制器 23 3.2.1機率型模糊類神經網路架構 23 3.2.2 機率型模糊類神經網路線上學習演算法 26 3.3 自我組織成長機率型模糊類神經網路龍門位置控制系統 28 3.4 實驗結果與討論 31 第四章 基於分數階滑動模式控制之單軸永磁線型同步馬達系統 52 4.1 簡介 52 4.2滑動模式控制系統 53 4.3分數階滑動模式控制系統 55 4.3.1 分數階滑動模式控制器設計 58 4.4智慧型分數階滑動模式控制系統 59 4.4.1機率型模糊類神經網路估測器 59 4.4.2智慧型分數階滑動模式控制器設計 59 實驗結果與討論 64 第五章 基於三自由度龍門動態模型之智慧型分數階滑動模式控制之龍門控制系統 80 5.1 簡介 80 5.2 三自由度龍門動態模型 81 5.3基於三自由度龍門動態模型之智慧型分數階滑動模式控制器設計 84 5.4實驗結果與討論 91 第六章 結論與未來研究展望 119 6.1 結論 119 6.2 未來研究展望 120 參考文獻 121 自傳 126 學術成就 127

    [1] F. J. Lin, H. J. Hsieh, P. H. Chou, and Y. S. Lin, “Digital signal processor-based cross-coupled synchronous control of dual linear motors via functional link radial basis function network, ” IET Control Theory Application, vol. 5, no. 4, pp. 552-564, 2011.
    [2] C. S. Chen, P. H. Chou P. H. and F. J. Lin, “DSP-based cross-coupled synchronous control for dual linear motors via functional link radial basis function network, ” IEEE International Conference on Fuzzy Systems(FUZZ), pp. 872-878, 2011.
    [3] K. Cho, J. Kim, S. B. Choi, and S. Oh, “A high-precision motion control based on a periodic adaptive disturbance observer in a PMLSM, ” IEEE/ASME Trans. Mechatronics, vol. 20, no. 5, pp. 2158-2171, 2015.
    [4] C. S. Ting, Y. N. Chang, B. W. Shi and J. F. Lieu, “Adaptive backstepping control for permanent magnet linear synchronous motor servo drive, ” IET Electric Power Application, vol. 9, no. 3, pp. 265-276, 2015.
    [5] F. J. Lin, S. Y. Chen, L. T. Teng and H. Chu, “Recurrent Functional-Link-Based Fuzzy Neural Network Controller With Improved Particle Swarm Optimization for a Linear Synchronous Motor Drive, ” IEEE Trans. Magnetics, vol. 45, no. 8, pp. 3151-3165, 2009.
    [6] R. B. Arreola, “Output feedback nonlinear control for a linear motor in suspension mode, ” Automatica, vol. 40, no. 12, pp. 2153-2160, 2004.
    [7] M. T. Yan and Y. J. Shiu, “Theory and application of a combined feedback-feedforward control and disturbance observer in linear motor drive wire-EDM machines, ” International Journal of Machine Tools & Manufacture, vol. 48, no. 3-4, pp. 388-401, 2008.
    [8] M. Y. Chen and J. S. Lu, “High-precision motion control for a linear permanent magnet iron core synchronous motor drive in position platform,” IEEE Trans. Industrial Informatics, vol. 10, no. 1, pp. 99-108, 2014.
    [9] J. S. R. Jang, C. T. Sun and E. Mizutani, “Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence, ” IEEE Trans. Automatic, vol. 42, no. 10, pp. 1482-1484, 1997.
    [10] J. S. R. Jang and C. T. Sun, “Functional equivalence between radial basis function networks and fuzzy inference systems, ” IEEE Trans. Neural Networks, vol. 4, no. 1, pp. 156-159, 1993.
    [11] H. D. Patino and D. Liu, “Neural network-based model reference adaptive control system, ” IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 30, no. 1, pp. 198-204, 2000.
    [12] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning-I, ” Information Sciences, vo. 8, no. 3, pp. 199-249, 1975.
    [13] M. J. Er and C. Deng, “Obstacle avoidance of a mobile robot using hybrid learning approach, ” IEEE Trans. Industrial Electronics, vol. 52, no. 3, pp. 898-905, 2005.
    [14] F. J. Lin and P. H. Shen, “Robust fuzzy neural network sliding-mode control for two-axis motion control system, ” IEEE Trans. Industrial Electronics, vol. 53, no. 4, pp. 1209-1225, 2006.
    [15] F. J. Lin, P. H. Shieh and P. H. Chou, “Robust adaptive backstepping motion control of linear ultrasonic motors using fuzzy neural network, ” IEEE Trans. Fuzzy Systems, vol. 16, no. 3, pp. 672-692, 2008.
    [16] A. Gajate, R. E. Haber, P. I. Vega and J. R. Alique, “A transductive neuro-fuzzy controller: application to a drilling process, ” IEEE Trans. Neural Networks, vol. 21, no. 7, pp. 1158-1167, 2010.
    [17] C. C. Chuang, S. F. Su and S. S. Chen, “Robust TSK fuzzy modeling for function approximation with outliers,” IEEE Trans. Fuzzy Systems, vol. 9, no. 6, pp. 810-821, 2001.
    [18] Y. Gao and M. J. Er, “Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems” IEEE Trans. Fuzzy Systems, vol. 11, pp. 462-477, 2003.
    [19] C. J. Lin and C. C. Chin, “Prediction and identification using wavelet-based recurrent fuzzy neural networks,” IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, no. 5, pp. 2144-2154, 2004.
    [20] I. B. Kucukdemiral and G. Cansever, “Formalization of a novel Sugeno type adaptive fuzzy sliding mode controller for a class of nonlinear systems,” IEEE International Conference on Mechatronics, pp. 717-720, 2005.
    [21] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai and C. H. Kuan, “DSP-Based Probabilistic Fuzzy Neural Network Control for Li-Ion Battery Charger, ” IEEE Trans. Power Electronics, vol. 27, no. 8, pp. 3782–3794, 2012.
    [22] F. J. Lin, Y. C. Huang, J. C. Hwang, I. P. Chang and M. T. Tsai, “Digital signal processor-based probabilistic fuzzy neural network control of in-wheel motor drive for light electric vehicle, ” IET Electric Power Applications, vol. 6, no. 2, pp. 47–61, 2012.
    [23] F. J. Lin, K. C. Lu, T. H. Ke, B. H. Yang and Y. R. Chang, “Reactive Power Control of Three-Phase Grid-Connected PV System During Grid Faults Using Takagi-Sugeno-Kang Probabilistic Fuzzy Neural Network Control, ” IEEE Trans. Industrial Electronics, vol. 62, no. 9, pp. 5516–5528, 2015.
    [24] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Prentice-Hall, 1991.
    [25] C. K. Lai and K. K. Shyu, “A Jnovel motor drive design for incremental motion system via sliding-mode control method,” IEEE Trans. Industrial Electronics, vol. 52, no. 2, pp. 449-509, 2005
    [26] S. C. Tan, Y. M. Lai and C. K. Tse, “Indirect sliding mode control of power converters via double integral sliding surface,” IEEE Trans. Power Electronics, vol. 23, no. 2, pp. 600-611, 2008.
    [27] B. Beltran, T. Ahmed-Ali, and M. Benbouzid, “High-order sliding-mode control of variable-speed wind turbines” IEEE Trans. Industrial Electronics, vol. 56, no. 9, pp. 3314-3321, 2009.
    [28] B. Veselic, B. Perunicic-Drazenovic and C. Milosavljevic, “Improved discrete-time sliding-mode position control using Euler velocity estimation,” IEEE Trans. Industrial Electronics, vol. 57 no. 11, pp. 3840-3847, 2010.
    [29] V. Utkin, “Variable Structure systems with sliding modes,” IEEE Trans. Automatic Control, vol. 22, no. 2, pp. 212–222, 1977.
    [30] C. W. Tao, J. S. Taur, and M. L. Chan, “Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-varying uncertainties,” IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, no. 1, pp. 255-262, 2004.
    [31] J. C. Huang, H. S. Hong, F. L. Teng and D. Liu, “Fractional order sliding mode controller for the speed control of a permanent magnet synchronous motor,” Conference on Control and Decision, pp. 1203-1208, 2012.
    [32] C. Li, B. Yao, X. Zhu, and Q. Wang, “Adaptive robust synchronous control with dynamic thrust allocation of dual drive gantry stage,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 316–321, 2014.
    [33] C. S. Chen, P. H. Chou and F. J. Lin, “DSP-based cross-coupled synchronous control for dual linear motors via functional link radial basis function network” International Conference on Fuzzy Systems, pp. 872–878, 2011
    [34] F. J. Lin, H. J. Hsieh, P. H. Chou and Y. S. Lin, “Digital signal processor-based cross-coupled synchronous control of dual linear motors via functional link radial basis function network,” IET Control Theory & Applications, vol. 5, no. 4, pp. 552–564, 2011.
    [35] F. J. Lin, S. Y. Chen, L. T. Teng and H. Chu, “Recurrent functional-link-based fuzzy neural network controller with improved particle swarm optimization for a linear synchronous motor drive,” IEEE Trans. Magnetics, vol. 45, no. 8, pp. 3151–3165, 2009.
    [36] 周柏寰,智慧型同動控制之龍門式定位平台,博士論文,國立東華大學電機工程學系,花蓮,2011。
    [37] D. F. Specht, “Probabilistic neural networks and the polynomial Adaline as complementary techniques for classification,” IEEE Trans. Neural Networks, vol. 1, no. 1, pp. 111–121, 1990.
    [38] H. X. Li and Z. Liu, “A Probabilistic Neural-Fuzzy Learning System for Stochastic Modeling,” IEEE Trans. Fuzzy Systems, vol. 16, no. 4, pp. 898–908, 2008.
    [39] C. F. Juang and C. T. Lin, “ An online self-constructing neural fuzzy inference network and its applications,” IEEE Trans. Fuzzy Systems, vol. 6, no. 1, pp. 12–32, 1998.
    [40] T. H. Ho and K. K. Ahn, “Speed control of a hydraulic pressure coupling drive using an adaptive fuzzy sliding-mode control,” IEEE/ASME Trans. Mechatronics, vol. 17, no. 5, pp. 976-986, 2012.
    [41] C. S. Teo, K. K. Tan, S. Y. Lim, S. Huang and E. B. Tay, “Dynamic modeling and adaptive control of a H-type gantry stage,” Mechatronics, vol. 17, no. 7, pp. 361-367, 2007.

    下載圖示
    QR CODE