簡易檢索 / 詳目顯示

研究生: 吳求文
Chiu-Wen Wu
論文名稱: 旋轉機械線上監控與異常辨識系統
On-line Monitoring and Fault Diagnosis System of Rotary Machines
指導教授: 吳順德
Wu, Shuen-De
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 118
中文關鍵詞: 異常辨識組合多尺度分析特徵選取
英文關鍵詞: fault diagnostics, composite multiscale analysis, feature selection
論文種類: 學術論文
相關次數: 點閱:280下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 軸承是旋轉機械中很重要的關鍵零組件,當軸承出現異常時往往會使機台出現無法預期的損壞,因此過去十年來有許多學界與業界的相關人員投入軸承異常辨識的相關研究。本論文提出一個完整的軸承異常辨識流程,能準確區分不同型態的軸承錯誤,此流程又可分為三個部分,首先是提出數種不同計算亂度的方法從機台的振動訊號中抽出相關的特徵,其次是透過特徵選取的流程選出最有用的特徵,最後再以選出的特徵及一對一支持向量機建立辨識模型。
    本論文主要的貢獻在於:
    1. 我們介紹數種以計算亂度為基礎的特徵抽取演算法,包括多尺度熵、多尺度排序熵、多頻帶頻譜熵,此外,我們還提出組合多尺度分析方法,可以有效提升多尺度分析的性能。
    2. 我們介紹了Fisher score、Mahalanobis distance兩種特徵選取方法,透過本論文設計的流程可以選出最佳化的特徵,實驗結果顯示,以最佳化的特徵所訓練的模型,辨識能力會遠遠高於未使用的結果。
    本論文實驗的資料使用Case Western Reserve University (CWRU)的軸承振動訊號,實驗中設計了19種不同的情況用來驗證系統的辨識能力。實驗的結果顯示,本論文所提出的辨識流程對於辨識軸承異常的種類有非常高的辨識率。

    Bearings are the most frequently used component in a rotary machine. Bearing failure could lead to unpredictable productivity loss for production facilities. Therefore, the fault diagnosis of bearing has attracted significant attention from the research and engineering community over the past decades. In this dissertation, a bearing fault diagnosis algorithm was proposed to identify the types of bearing fault. This proposed algorithm is decomposed into three key phases. Firstly, the defect-related features were extracted from the vibrational signal by using several entropy-based algorithms. Secondly, the optimal feature set is obtained by the feature-selection algorithm. Finally, a classifier model is trained by using the optimal feature set and the one-against-one support vector machine.
    The main contributions of this dissertation can be summarized as follows:
    1. We introduce several entropy-based algorithms including, multiscale entropy (MSE), multiscale permutation entropy (MPE) and multiband spectral entropy (MBSE) to extract defect-related feature hidden in the measured signal. Furthermore, a composite algorithm for MSE and MPE, named composite MSE (CMSE) and composite MPE (CMPE) were proposed to improve the performance of the feature extraction.
    2. We introduce two feature selection algorithms including, Fisher score and Mahalanobis distance to select the sensitive features from the original feature set. An optimal feature set can be obtained by using the propose feature selection algorithm. Experiments show classifier model trained by optimal feature set is the most effective for the fault diagnosis of bearings.

    In the simulations presented in this dissertation, the vibration signal datasets of bearing from Case Western Reserve University (CWRU) are utilized. Nineteen experiments are designed to evaluate the capability of the proposed fault diagnosis system. Experimental results demonstrate that the proposed system provides a significantly higher accuracy of prediction for the classification of bearing faults.

    摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 論文架構 4 第二章 系統架構 5 2.1. 資料擷取系統軟硬體簡介 6 2.2. 線上監控系統 9 第三章 旋轉機械異常之特徵擷取方法 13 3.1 統計分析 13 3.1.1 方均根值(Root-mean-square value, RMS) 13 3.1.2 偏度(Skewness) 14 3.1.3 峰度(Kurtosis) 15 3.2 亂度分析 16 3.2.1 熵(Entropy) 16 3.2.2 頻譜熵(Spectral entropy) 16 3.2.3 排序熵(Permutation entropy) 17 3.2.4 正規化(Normalization) 18 3.2.5 樣本熵(Sample entropy) 19 3.3 多尺度分析 20 3.3.1 粗粒化流程(Coarse-grained procedural) 20 3.3.2 多尺度熵(Multiscale entropy, MSE) 22 3.3.3 多尺度排序熵(Multiscale permutation entropy, MPE) 23 3.3.4 多尺度方均根值(Multiscale root-mean-square value, MSRMS) 24 3.3.5 多頻帶頻譜熵(Multiband spectrum entropy, MBSE) 25 3.4 改良式多尺度分析方法 27 3.4.1 組合多尺度分析(Composite multiscale analysis) 27 第四章 特徵擷取方法之特性分析 29 4.1 樣本熵 29 4.1.1 資料長度之影響 29 4.1.2 r之影響 29 4.1.3 訊號平均值之影響 30 4.1.4 訊號振幅之影響 30 4.2 排序熵 33 4.2.1 資料長度之影響 33 4.2.2 階次之影響 34 4.2.3 訊號平均值之影響 35 4.2.4 訊號振幅之影響 35 4.3 方均根值 38 4.3.1 資料長度之影響 38 4.3.2 訊號平均值之影響 38 4.3.3 訊號振幅之影響 38 4.4 頻譜熵 41 4.4.1 資料長度之影響 41 4.4.2 訊號平均值之影響 41 4.4.3 訊號振幅之影響 41 4.5 多尺度方法 44 4.5.1 組合多尺度熵 44 4.5.2 組合多尺度排序熵 45 4.5.3 組合多尺度方均根值 46 4.5.4 多頻帶頻譜熵 46 4.6 小結 47 第五章 特徵選取與支持向量機 49 5.1 特徵選取 49 5.1.1 Fisher score 49 5.1.2 Mahalanobis distance 50 5.2 支持向量機 51 第六章 實驗設計與實驗結果 56 6.1 CWRU 軸承資料 56 6.2 實驗設計 57 6.2.1 實驗流程 57 6.2.2 特徵擷取結果 60 6.3 實驗一:單尺度、多尺度、組合多尺度分析比較 73 6.3.1 實驗參數 73 6.3.2 實驗結果 73 6.4 實驗二:CMSE、CMPE、混合特徵比較暨訓練量比較 80 6.4.1 實驗參數 80 6.4.2 實驗結果 80 6.5 實驗三:特徵選取方法評比 86 6.5.1 實驗參數 86 6.5.2 實驗結果 86 第七章 結果與未來展望 90 7.1 結果與討論 90 7.2 未來展望 91 參考文獻 92 附錄A-實驗資料 97 附錄B-實驗分類明細 114

    [1] 劉信宏, “2011~2015年台灣工具機在全球市場發展潛力分析,” ITIS產業評析, 2010.
    [2] Z. Xu, J. Xuan, T. Shi, B. Wu and Y. Hu, "A Novel Fault Diagnosis Method of Bearing Based on Improved Fuzzy ARTMAP and Modified Distance Discriminant Technique," Expert Systems with Applications, vol. 36, pp. 11801-11807, 2009.
    [3] S. Wadhwani, A. K. Wadhwani, S. P. Gupta and V. Kumar, "Detection of Bearing Failure in Rotating Machine Using Adaptive Neuro-Fuzzy Inference System," in Power Electronics, Drives and Energy Systems, 2006. PEDES '06. International Conference on, New Delhi, 2006.
    [4] R. Yan and R. X. Gao, "Approximate Entropy as a Diagnosis Tool for Machine Health Monitoring," Mechanical Systems and Signal Processing, vol. 21, pp. 824-839, 2007.
    [5] R. Yan and R. X. Gao, "Complexity as a Measure for Machine Health Evaluation," Instrumentation and Measurement, IEEE Transactions on, vol. 53, no. 4, pp. 1327-1334, 2004.
    [6] H. Hong and M. Liang, "Fault Severity Assessment for Rolling Element Bearing Using the Lempel-Ziv Complexity and Continuous wavelet Transform," Journal of Sound and Vibration, vol. 320, pp. 452-468, 2009.
    [7] R. Yan, Y. Qian, Z. Huang and R. X. Gao, "Rolling Bearing Defect Severity Evaluation Using Recurrence Plot Entropy," in Instrumentation and Measurement Technology Conference, Nanjing, China, 2011.
    [8] Y. N. Pen, J. Chen and X. L. Li, "Spectral Entropy: A Complementary Index for Rolling Element Bearing Performance degradation Assessment," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 223, pp. 1223-1231, 2009.
    [9] J. Hu, R. Shao and Z. Zeng, "Method of Gear’s Fault Diagnosis Based on Spectral Entropy," Journal of Mechanical Transmission, May 2007.
    [10] B. Li, P. Zhang, S. Liang and G. Ren, "Feature Extraction and Selection for Fault Diagnosis of Gear Using Wavelet Entropy and Mutual Information," in Signal Processing, 2008. ICSP 2008. 9th International Conference on, Beijing, China, 2008.
    [11] J. Huang, H. Pen and S. Bi, "Bispectrum Entropy Feature Extraction and its Application for Fault Diagnosis of Gearbox," in Fuzzy Systems (FUZZ), 2010 IEEE International Conference on, Barcelona, 2010.
    [12] R. Hao, Z. Peng, Z. Feng and F. Chu, "Application of Support Vector Machine Based on Pattern Spectrum Entropy in Fault Diagnostics of Rolling Element Bearings," Measurement Science and Technology, vol. 22, p. 045708, 2011.
    [13] D. Yu, Y. Yang and J. Cheng, "Application of Time Frequency Entropy Method Based on Hilbert-Huang Transform to Gear Fault Diagnosis," Measurement, vol. 40, pp. 823-830, 2007.
    [14] Y. G. Lei, M. J. Zuo, Z. J. He and Y. Y. Zi, "A Multidimensional Hybrid Intelligent Method for Gear Fault Diagnosis," Expert Systems with Applications, vol. 37, pp. 1419-1430, 2010.
    [15] L. Zong, G. Xiong, H. Liu, H. Zou and W. Guo, "Bearing Fault Diagnosis Using Multi-scale Entropy and Adaptive Neuro-Fuzzy Inference," Expert Systems with Applications, vol. 37, pp. 6077-6085, 2010.
    [16] J. L. Lin, Y. C. Liu, C. W. Li, L. F. Tsai and H. Y. Chung, "Motor Shaft Misalignment Detection Using Multiscale Entropy with Wavelet Denoising," Expert Systems with Applications, vol. 37, pp. 7200-7204, 2010.
    [17] 吳求文、王俊傑、吳順德, “基於多尺度熵、區別指標與支持向量機之旋轉機械異常診斷系統,” 於 第二十八屆中國機械工程全國學術研討會, 台中市, 2011.
    [18] 李威諭、吳求文、吳順德, “基於多尺度排序熵與k-means分類器之錯誤診斷系統,” 於 2012中華民國系統科學與工程研討會, 基隆市, 2012.
    [19] D. S. Wu, W. C. Wu, H. P. Wu and J. J. Ding, "Bearing Fault Diagnosis Based on Multiscale Permutation Entropy and Support Vector Machine," in The 3nd International Conference on Mechanic Automation and Control Engineering (MACE 2012), Inner Mongolia, China, 2012.
    [20] 王俊傑、吳求文、吳順德、李易宗、吳豐泰, “多尺度頻譜熵在軸承異常監控與診斷之應用,” 於 第二十八屆中國機械工程學術研討會, 台中市, 2011.
    [21] 林庭毅、吳順德、林倪鋒, “基於多尺度方均根值與前饋式倒傳遞網路之機械錯誤診斷系統,” 於 2012中華民國系統科學與工程研討會, 基隆市, 2012.
    [22] W. X. Sun, J. Chen and J. Q. Li, "Decision tree and PCA-based fault diagnosis of rotating machinery," Mechanical Systems and Signal processing, vol. 21, pp. 1300-1317, 2007.
    [23] Z. X. Li, X. P. Yan, C. Q. Yuan, Z. X. Peng and L. Li, "Virtual Prototype and Experimental Research on Gear Multi-Fault Diagnosis Using Wavelet-Autoregressive Model and Principal Component Analysis Method," Mechanical Systems and Signal processing, no. 25, pp. 2589-2607, 2011.
    [24] W. C. Kao, C. K. Yu, C. P. Shen and P. Y. Hsiao, "Electrocardiogram Analysis with Adaptive Feature Selection and Support Vector Machines," in n Proc. IEEE Asia Pacific Conference on Circuits and Systems, Singapore, 2006.
    [25] W. C. Kao, M. C. Hsu and Y. Y. Yang, "Local contrast Enhancement and Adaptive Feature Extraction for Illumination-invariant Face Recognition," Pattern Recognition, vol. 43, no. 6, pp. 1736-1747, 2010.
    [26] P. Chen, T. Toyota and Z. J. He, "Automated Function Generation of Symptom Parameters and Application to Fault Diagnosis of Machinery Under Variable Operating Conditions," IEEE Transactions on Systems, Man, and Cybernetic-Part A: Systems and Humans, vol. 31, no. 6, pp. 775-781, 2001.
    [27] N. Saravanan, V. K. Siddabattuni and K. I. Ramachandran, "Fault Diagnosis of Spur Bevel Gear Box Using Artificial Neural Network(ANN), and Proximal Support Vector Machine(PSVM)," Applied Soft Computing, vol. 10, pp. 344-360, 2010.
    [28] J. D. Yu, F. M. Chen, S. J. Cheng and Y. Yang, "A Fault Diagnosis Approach for Gears Based on IMF AR Model and SVM," EURASIP Journal on Advances in Signal Processing, vol. 2008, 2008.
    [29] C. W. Hsu and C. J. Lin, "A Comparison of Methods for Multiclass Support Vector Machines," IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 415-425, 2002.
    [30] H. Qiu, J. Lee, J. Lin and G. Yu, "Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics," Journal of Sound and Vibration, vol. 289, pp. 1066-1090, 2005.
    [31] M. Costa, A. L. Goldberger and C. K. Peng, "Multiscale Entropy Analysis of Complex Physiologic Time Series," Physical Review Letters, vol. 9, no. 6, pp. 068102-1-068102-4, 2002.
    [32] "ISO 10816-1," 1995.
    [33] E. C. Shannon, "A Mathematical Theory of Communication," Bell System Technical Journal, vol. 27, pp. 379-423, 623-656, Jul, Oct 1948.
    [34] E. G. Powell and I. C. Percival, "A Spectral Entropy Method for Distinguishing Regular and Irregular Motion of Hamiltonian," Journal of Physics A: Mathematical and General, vol. 12, pp. 2053-2071, Nov 1979.
    [35] C. Bandt and B. Pompe, "Permutation Entropy: A Natural Complexity Measure for Time Series," Physical Review Letter, vol. 88, pp. 174102-1-174102-4, April 2002.
    [36] E. Olofsen, J. W. Sleigh and A. Dahan, "Permutation entropy of the electroencephalogram: a measure of anaesthetic drug effect," British Journal of Anaesthesia, vol. 101, pp. 810-821, 2008.
    [37] X. Li, S. Cui and L. J. Voss, "Using permutation entropy to measure the electroencephalographic effects of sevoflurane," Anesthesiology, vol. 109, no. 3, pp. 448-456, 2008.
    [38] Y. B. Liu, Q. Long, Z. H. Feng and W. L. Liu, "Detection Method for Nonlinear and Nonstationary Signals," Journal of Vibration and Shock, Dec 2007.
    [39] R. Q. Yan, Y. B. Liu and R. X. Gao, "Permutation Entropy: A Nonlinear Statistical Measure for Status Characterization of Rotary Machines," Mechanical Systems and Signal Processing, Dec 2011.
    [40] J. S. Richman and J. R. Moorman, "Physiological Time-Series Analysis using Approximate Entropy and Sample Entropy," American Journal of Physiology Heart and Circulatory Physiology, vol. 278, no. 6, pp. 2039-2049, 2000.
    [41] A. Samani and P. Madeleine, "Permuted Sample Entropy," Communications in Statistics - Simulation and Computation, vol. 39, pp. 1506-1516, Aug 2010.
    [42] Y. H. Pan, W. Y. Lin, Y. H. Wang and K. T. Lee, "Computing Multiscale Entropy with Orthogonal Range Search," Journal of Marine Science and Technology, vol. 19, no. 1, pp. 107-113, Feb 2011.
    [43] M. Costa, C. K. Peng, A. L. Goldberger and J. M. Hausdorff, "Multiscale entropy analysis of human gait dynamics," Physica A: Statistical Mechanics and its Applications, vol. 330, pp. 53-60, 2003.
    [44] W. Aziz and M. Arif, "Multiscale Permutation Entropy of Physiological Time Series," in 9th International Multitopic Conference, IEEE INMIC 2005, Karachi, 2005.
    [45] D. Li, X. L. Li, Z. H. Liang, L. J. Voss and J. W. Sieigh, "Multiscale Permutation Entropy Analysis of EEG Recordings During Sevoflurane Anesthesia," Journal of Neural Engineering, vol. 7, no. 4, p. 046010, 2010.
    [46] P. C. Mahalanobis, "On the generalized distance in statistics," Proceedings of the National Institute of Sciences of india 2, no. 1, p. 4955, 1936.
    [47] "Bearing Data Center : Seeded Fault Test Data," [Online]. Available: http://csegroups.case.edu/bearingdatacenter/home.

    下載圖示
    QR CODE