研究生: |
林嘉發 Lin, Chia-Fa |
---|---|
論文名稱: |
天然植化素槲皮素與蘿蔔硫素對糖尿病大鼠的泌尿系統保護機轉 The Mechanisms of Natural Phytochemicals Quercetin and Sulforaphane on Protection of Urinary System in Diabetic Rats |
指導教授: |
鄭劍廷
Chien, Chiang-Ting |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 124 |
中文關鍵詞: | 細胞凋亡 、細胞自噬 、發炎性細胞凋亡 、粒線體 、槲皮素 、海藻糖 、蘿蔔硫素 、氧化壓力 、糖尿病 、排尿功能 、Nrf2轉錄因子 |
英文關鍵詞: | apoptosis, autophagy, pyroptosis, mitochondria, quercetin, trehalose, sulforaphane, oxidative stress, diabetes mellitus, voiding function, Nrf2 |
DOI URL: | http://doi.org/10.6345/NTNU202000323 |
論文種類: | 學術論文 |
相關次數: | 點閱:220 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在探討天然植化素(phytochemicals)對於糖尿病大鼠的泌尿系統保護作用,並研究有關細胞凋亡(apoptosis)、細胞自噬(autophagy)、發炎性細胞凋亡(pyroptosis),和粒線體功能的作用機轉。我們建立了兩種不同誘發糖尿病的動物模型,第II型糖尿病(Type 2 diabetes mellitus, T2DM)模型,與第I型糖尿病(Type I diabetes mellitus, T1DM)模型。T2DM模型主要研究對象是第II型糖尿病(Type 2 diabetes mellitus, T2DM)之腎臟細胞損傷與保護,而T1DM模型則是用於研究糖尿病的排尿功能障礙,這通常會發生在較嚴重的T1DM高血糖狀態,因為T1DM模型可以快速誘導糖尿病膀胱(diabetic bladder)損傷。
我們萃取富含槲皮素(quercetin)的番石榴汁,並混合不同比例的海藻糖(trehalose),來研究其對於T2DM大鼠腎臟和胰臟損傷的保護作用,並採用高效液相色譜分析法以測定番石榴汁的有效成分。通過腹腔注射菸鹼醯胺(nicotinamide)和鏈脲佐菌素(streptozocin),結合高果糖飲食誘導Wistar大鼠T2DM模型,持續8周。用不同劑量的番石榴汁混和海藻糖餵養大鼠4周,檢測口服葡萄糖耐量試驗(Oral Glucose Tolerance Test, OGTT)、血漿胰島素(insulin)、糖化血色素(glycated hemoglobin, HbA1c)、胰島素抗性指數(Homeostasis Model Assessment-Insulin Resistance index, HOMA-IR)、β細胞功能和胰島素分泌指數(Homeostasis Model Assessment of β-cell function, HOMA-β)。我們也使用了免疫組織化學染色法、螢光染色法和西方墨點法來測定氧化和發炎程度,用化學發光分析儀測定了血清和腎組織活性氧類(Reactive Oxygen Species, ROS)濃度。
結果發現,番石榴汁中高含量的槲皮素對過氧化氫(Hydrogen Peroxide, H2O2)和次氯酸(hypochlorous acid, HOCl)有清除作用,而海藻糖對H2O2有選擇性清除作用,而對HOCl無清除作用。對於T2DM的OGTT、insulin、HbA1c、HOMA-IR和HOMA-β水平均有影響,而番石榴混和海藻糖對T2DM改變的參數,除HbA1c外均有顯著改善。番石榴汁混和海藻糖能顯著降低T2DM所增強的腎臟ROS、4-hydroxynonenal、caspase-3/apoptosis、LC3-B/autophagy,以及 IL-1β/pyroptosis的水平。研究結果顯示:番石榴汁混和海藻糖的攝取,對於因T2DM而損傷的胰臟和腎臟細胞,具有顯著的保護作用。
嚴重的高血糖能誘發氧化壓力,造成糖尿病膀胱(diabetic bladder),進而引發排尿功能障礙。我們在論文中探討了蘿蔔硫素(sulforaphane),一種具有抗氧化力的轉錄因子Nuclear factor erythroid 2-related factor 2(Nrf2)激活劑,是否具有預防糖尿病因高血糖而併發膀胱功能障礙的功用。糖尿病誘導前給予鏈脲佐菌素和蘿蔔硫素,用化學發光分析儀測定膀胱活性氧類,另用西方墨點法檢測粒線體功能、粒線體Bcl-2-associated X protein(Bax)和胞漿細胞色素cytochrome c、抗氧化防禦能力Nuclear factor erythroid 2-related factor 2/heme oxygenase-1(Nrf2/HO-1)、內質網壓力標誌物Activating transcription factor 6/C/EBP Homologous Protein(ATF-6/CHOP)和Caspase 3/poly ADP-ribose polymerase (Caspase 3/PARP)。糖尿病增加膀胱組織中Keap1的表現,並降低Nrf2的表現,與膀胱活性氧增加、粒線體Bax轉位、胞漿細胞色素(cytochrome c)釋放、ATF-6/CHOP、Caspase 3/PARP/apoptosis增加有關,通過增加排尿間隔時間和排尿時間導致排尿功能障礙。蘿蔔硫素能顯著活化Nrf2/HO-1軸的表現,減少膀胱活性氧、粒線體Bax轉位、細胞色素C釋放、ATF-6/CHOP和caspase 3/PARP/apoptosis,從而通過縮短排尿間期和排尿時間來改善排尿功能。根據研究結果,我們認為蘿蔔硫素通過激活Nrf2/HO-1信號通路保護了粒線體功能,並抑制糖尿病誘導的ROS、內質網壓力、細胞凋亡和排尿功能障礙。
研究顯示,天然植化素槲皮素與蘿蔔硫素,的確具有保護糖尿病大鼠泌尿系統之效益。
In this study, we investigated the protective effects of natural phytochemicals on urinary system in diabetic rats, and investigated the mechanisms of apoptosis, autophagy, pyroptosis, and mitochondrial function. We have established two different animal models of diabetes, T2DM (Type II diabetes) model and T1DM (Type I diabetes) model. T2DM model is used to research the protection of T2DM rats on kidney cell damage by hyperglycemia. However, T1DM model is used to study the urination disorder occurred in the more serious hyperglycemia condition in T1DM because of diabetes mellitus bladder rapidly induced by T2DM model method.
We extracted quercetin from psidium guajava, combined with trehalose to study the protective effect on kidney and pancreas injury in T2DM rats. Use high-performance liquid chromatography (HPLC) analysis to determine the active components of guava juice. T2DM was induced in Wistar rats by intraperitoneal injection of nicotinamide and streptozocin combined with a high fructose diet for 8 weeks. Oral glucose tolerance test (OGTT), plasma insuin, glycated hemoglobin (HbA1c), homeostasis model assessment of insulin resistance (HOMA-IR) , homeostasis model assessment of the function of β cell in pancreas and insulin secretion index (HOMA-β) were observed in rats fed with different doses of guava juice and trehalose for 4 weeks. The degree of oxidation and inflammation was determined by immunohistochemical staining, fluorescence staining and western blotting, and the serum and renal reactive oxygen species (ROS) were determined by chemiluminescence analysis.
The results showed that quercetin in guava juice could scavenge H2O2 and HOCl, while trehalose could selectively scavenge H2O2, not for HOCl. T2DM had effects on OGTT, plasma insulin, HbA1c, HOMA-IR and HOMA-β, while guava and trehalose had significant effects on T2DM except HbA1c. Guava juice combined with trehalose significantly decreased T2DM-enhanced renal ROS, 3-nitrotyrosine, Caspase-3 / Apoptosis, LC3-B / autophagy and IL-1β / pyroptosis. We found that guava juice combined with trehalose had protective effects on cells of pancreas and kidney damaged by T2DM.
Hyperglycemia evoked oxidative stress to induce diabetes voiding dysfunction. We explored whether antioxidant sulforaphane, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, may ameliorate DM-induced bladder dysfunction. Streptozotocin and sulforaphane was administered before DM induction. Bladder ROS was determined by an ultrasensitive chemiluminescence analyzer. Mitochondrial function index, mitochondrial bax, cytosolic cytochrome c, antioxidant defense Nrf2/HO-1, endoplasmic reticulum stress marker ATF-6/CHOP, and Caspase 3/PARP were evaluated by western blotting. DM increased Keap1 and reduced Nrf2 expression, associated with increase of bladder ROS, mitochondrial Bax translocation, cytosolic cytochrome c release, ATF-6/CHOP, Caspase-3/PARP in bladders which resulted in voiding dysfunction by increased intercontraction intervals and micturition duration. However, sulforaphane significantly increased nuclear Nrf2/HO-1 axis expression, decreased bladder ROS amount, mitochondrial Bax translocation, cytochrome c release, ATF-6/CHOP and Caspase 3/PARP/apoptosis, thereby improved the voiding function by the shortened intercontraction intervals and micturition duration. We suggested that sulforaphane via activating Nrf2/HO-1 signaling preserved mitochondrial function and suppressed DM-induced ROS, endoplasmic reticulum stress, apoptosis and voiding dysfunction.
In conclusion, these studies have shown that natural phytochemicals quercetin and sulforaphane have the benefit of protecting the urinary system in diabetic rats.
1. Hunyadi, A.; Martins, A.; Hsieh, T.J.; Seres, A.; Zupkó, I. Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats. PLOS ONE. 2012, e50619.
2. Nakamura, T.; Terajima, T.; Ogata, T.; Ueno, K.; Hashimoto, N.; Ono, K.; Yano, S. Establishment and pathophysiological characterization of type 2 diabetic mouse model produced by streptozotocin and nicotinamide. Biol. Pharm. Bull. 2006, 29, 1167-1174.
3. Sarah, W.; Gojka, R.; Anders, G.; Richard, S.; Hilary, K. Global prevalence of diabetes. Diabetes Care 2004, 27, 1047-1053.
4. Yoon, K.H.; Lee, J.H.; Kim, J.W.; Cho, J.H.; Choi, Y.H.; Ko, S.H.; Son, H.Y. Epidemic obesity and type 2 diabetes in Asia. Lancet. 2006, 368, 1681-1688
5. Stumvoll, M.; Goldstein, B.J.; van Haeften, T. W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005, 365, 1333-1346
6. Barry J. Goldstein, Dirk Mueller-Wieland; Type 2 Diabetes. Principles and Practice, Second Edition, Chapter 2. Pathogenesis of Type 2 Diabetes. 2016
7. Kakehi, T.; Yabe-Nishimura, C. NOX enzymes and diabetic complications. In Seminars in immunopathology 2008 (Vol. 30, No. 3, pp. 301-314). Springer-Verlag
8. Jha, J.C.; Gray, S.P.; Barit, D.; Okabe, J.; El-Osta, A.; Namikoshi, T.; Thallas-Bonke, V.; Wingler, K.; Szyndralewiez, C.; Heitz, F.; Touyz, R. M.; Cooper, M. E.; Schmidt, H.H.W.; Jandeleit-Dahm, K.A. Genetic targeting or pharmacologic inhibition of NADPH oxidase Nox4 provides renoprotection in long-term diabetic nephropathy. J. Am. Soc. Nephrol. 2014, 25, 1237-1254.
9. Calcutt, N.A.; Cooper, M.E.; Kern, T.S.; Schmidt, A.M. Therapies for hyperglycaemia-induced diabetic complications: from animal models to clinical trials. Nat. Rev. Drug Discov. 2009, 8, 417-430.
10. K K Yerneni, W Bai, B V Khan, R M Medford and R Natarajan. Hyperglycemia-induced activation of nuclear transcription factor kappa B in vascular smooth muscle cells. Diabetes 1999 Apr; 48(4): 855-864.
11. Daneshgari F, Liu G, Imrey PB. Time dependent changes in diabetic cystopathy in rats include compensated and decompensated bladder function. The Journal of urology. 2006;176(1):380-6.
12. Szasz T, Wenceslau CF, Burgess B, Nunes KP, Webb RC. Toll-Like Receptor 4 Activation Contributes to Diabetic Bladder Dysfunction in a Murine Model of Type 1 Diabetes. Diabetes. 2016;65(12):3754-64
13. Trend in Cell Biolody, 1999
14. Chien CT, Chang TC, Tsai CY, Shyue SK, Lai MK. Adenovirus-mediated bcl-2 gene transfer inhibits renal ischemia/reperfusion induced tubular oxidative stress and apoptosis. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2005;5(6):1194-203
15. Chung SD, Lai TY, Chien CT, Yu HJ. Activating Nrf2 signaling depresses unilateral ureteral obstruction-evoked mitochondrial stress-related autophagy, apoptosis and pyroptosis in kidney. PloS one. 2012;7(10):e47299
16. Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxidants & redox signaling. 2014;21(3):396-413
17. Tai HC, Chung SD, Chien CT, Yu HJ. Sulforaphane Improves Ischemia-Induced Detrusor Overactivity by Downregulating the Enhancement of Associated Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in Rat Bladder. Scientific reports. 2016;6:36110.
18. Lin, C.Y.; Yin, M.C. Renal protective effects of extracts from guava fruit (Psidium guajava L.) in diabetic mice. Plant Foods Hum. Nutr. 2012, 67, 303-308
19. Flores, G.; Dastmalchi, K.; Wu, S. B.; Whalen, K.; Dabo, A. J.; Reynertson, K. A.; Foronjy, R. F.; D’Armiento, J.M.; Kennelly, E. J. Phenolic-rich extract from the Costa Rican guava (Psidium friedrichsthalianum) pulp with antioxidant and anti-inflammatory activity. Potential for COPD therapy. Food Chem. 2013, 141, 889-895.
20. Lin, C.Y.; Yin, M.C. Renal protective effects of extracts from guava fruit (Psidium guajava L.) in diabetic mice. Plant Foods Hum. Nutr. 2012, 67, 303-308
21. Li, P.Y.; Hsu, C.C.; Yin, M.C.; Kuo, Y.H.; Tang, F.Y.; Chao, C.Y. Protective effects of red guava on inflammation and oxidative stress in streptozotocin-induced diabetic mice. Molecules 2015, 20, 22341-22350
22. Eidenberger, T.; Selg, M.; Krennhuber, K. Inhibition of dipeptidyl peptidase activity by flavonol glycosides of guava (Psidium guajava L.): A key to the beneficial effects of guava in type II diabetes mellitus. Fitoterapia 2013, 89, 74-79
23. Laura K. Stewart, Jeff L. Soileau, David Ribnicky, Zhong Q. Wang, Ilya Raskin, Alexander Poulev, Martin Majewski, William T. Cefalu, and Thomas W. Gettys. Quercetin transiently increases energy expenditure but persistently decreases circulating markers of inflammation in C57BL/6J mice fed a high-fat diet. Metabolism. 2008, 57 .
24. J. Mark Davis, E. Angela Murphy, Martin D. Carmichael, and Ben Davis, Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance, Am J Physiol Regul Integr Comp Physiol, 2009, 296
25. Balabolkin, II; Gordeeva, GF; Fuseva, ED; Dzhunelov, AB; Kalugina, OL; Khamidova, MM. Use of vitamins in allergic illnesses in children. Voprosy meditsinskoi khimii. 1992, 38 (5): 36–40. PMID 1492394
26. Nöthlings U, et al. Flavonols and pancreatic cancer risk. American Journal of Epidemiology. 2007, 166 (8): 924–931.
27. Davis JM, Murphy EA, Carmichael MD, Davis B. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am J Physiol Regul Integr Comp Physiol. 2009, 296 (4): R1071–7.
28. Clinicaltrials.gov, National Institutes of Health
29. Crowe JH, Crowe LM, Chapman D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science. 1984 Feb 17;223(4637):701-3.
30. Xu, C.; Li, X.; Wang, F.; Weng, H.; Yang, P. Trehalose prevents neural tube defects by correcting maternal diabetes-suppressed autophagy and neurogenesis. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E667-E678
31. Chen, Q.; Haddad, G.G. Role of trehalose phosphate synthase and trehalose during hypoxia: from flies to mammals. J. Exp. Biol. 2004, 207, 3125-3129
32. Sarkar, S.; Davies, J.E.; Huang, Z.; Tunnacliffe, A.; Rubinsztein, D.C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J. Biol. Chem. 2007, 282, 5641-5652
33. Liu, R.; Barkhordarian, H.; Emadi, S.; Park, C.B.; Sierks, M.R. Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42. Neurobiol. Dis. 2005, 20, 74-81
34. Eroglu, A.; Russo, M. J.; Bieganski, R.; Fowler, A.; Cheley, S.; Bayley, H.; Toner, M. Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat. Biotech. 2000, 18, 163-167.
35. Cheng Xu, Xuezheng Li, et al. Trehalose prevents neural tube defects by correcting maternal diabetes-suppressed autophagy and neurogenesis. Am J Physiol Endocrinol Metab. 2013 Sep 1;305(5):E667-78.
36. Wang XJ, Sun Z, Chen W, Li Y, Villeneuve NF, Zhang DD (August 2008). "Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1-C151: enhanced Keap1-Cul3 interaction". Toxicology and Applied Pharmacology. 230 (3): 383–9. doi:10.1016/j.taap.2008.03.003. PMC 2610481. PMID 18417180.
37. Chen S, Zhu Y, Liu Z, Gao Z, Li B, Zhang D, et al. Grape Seed Proanthocyanidin Extract Ameliorates Diabetic Bladder Dysfunction via the Activation of the Nrf2 Pathway. PloS one. 2015;10(5):e0126457.
38. Yin XM, Oltvai ZN, Korsmeyer SJ. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature. 1994;369(6478):321-3.
39. Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature. 1999;399(6735):483-7
40. Reed JC. Double identity for proteins of the Bcl-2 family. Nature. 1997;387(6635):773-6
41. Chien CT, Chang TC, Tsai CY, Shyue SK, Lai MK. Adenovirus-mediated bcl-2 gene transfer inhibits renal ischemia/reperfusion induced tubular oxidative stress and apoptosis. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2005;5(6):1194-203.
42. Chien CT, Chien HF, Cheng YJ, Chen CF, Hsu SM. Renal afferent signaling diuretic response is impaired in streptozotocin-induced diabetic rats. Kidney international. 2000;57(1):203-14.
43. Chien, C.T.; Lee, P.H.; Chen, C.F.; Ma, M.C.; Lai, M.K.; Hsu, S.M. De novo demonstration and co-localization of free-radical production and apoptosis formation in rat kidney subjected to ischemia reperfusion. J. Am. Soc. Nephrol. 2001, 12, 973-982.
44. Yu HJ, Lin BR, Lee HS, Shun CT, Yang CC, Lai TY, et al. Sympathetic vesicovascular reflex induced by acute urinary retention evokes proinflammatory and proapoptotic injury in rat liver. American journal of physiology Renal physiology. 2005;288(5):F1005-14.
45. Li WJ, Oh SJ. Diabetic cystopathy is associated with PARP/JNK/mitochondrial apoptotic pathway-mediated bladder apoptosis. Neurourol Urodyn. 2010 Sep;29(7):1332-7. doi: 10.1002/nau.20869.
46. Uchida, T.; Rossignol, F.; Matthay, M.A.; Mounier, R.; Couette, S.; Clottes, E.; Clerici, C. Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF-1alpha. J. Biol. Chem. 2004, 279, 14871–14878.
47. Zhou, J.; Schmid, T.; Frank, R.; Brüne, B. PI3K/Akt is required for heat shock proteins to protect hypoxia-inducible factor 1alpha from pVHL-independent degradation. J. Biol. Chem. 2004, 279, 13506–13513.
48. Srinivasan, K.; Viswanad, B.; Asrat, L., Kaul, C.L.; Ramarao, P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol. Res. 2005, 52, 313-320
49. Yadav, H.; Jain, S.; Sinha, P.R. Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 2007, 23, 62-68
50. Bieger, W.P.; Michel, G.; Barwich, D.; Biehl, K.; Wirth, A. Diminished insulin receptors on monocytes and erythrocytes in hypertriglyceridemia. Metabolism 1984, 33, 982-987
51. Srinivasan, K.; Viswanad, B.; Asrat, L., Kaul, C.L.; Ramarao, P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol. Res. 2005, 52, 313-320
52. Masiello, P.; Broca, C.; Gross, R.; Roye, M.; Manteghetti, M.; Hillaire-Buys, D.; Novelli, M.; Ribes, G. Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes, 1998, 47, 224-229
53. Suganya Tachakittirungrod, Siriporn Okonogi, Sombat Chowwanapoonpohn. Study on antioxidant activity of certain plants in Thailand: Mechanism of antioxidant action of guava leaf extract. Food Chemistry, Volume 103, Issue 2, 2007, Pages 381-388
54. Chen, H.Y.; Yen, G.C. Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food Chem. 2007, 101, 686-694
55. Katsuki, A.; Sumida, Y.; Gabazza, E.C.; Murashima, S.; Furuta, M.; Araki-Sasaki, R.; Hori, Y.; Yano. Y.; Adachi, Y. Homeostasis model assessment is a reliable indicator of insulin resistance during follow-up of patients with type 2 diabetes. Diabetes Care 2001, 24, 362-365.
56. Huang, C.S.; Yin, M.C.; Chiu, L.C. Antihyperglycemic and antioxidative potential of Psidium guajava fruit in streptozotocin-induced diabetic rats. Food Chem. Toxicol. 2011, 49, 2189-2195.
57. Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 2003, 52, 102-110.
58. Masini, M.; Bugliani, M.; Lupi, R.; Del Guerra, S.; Boggi, U.; Filipponi, F.; Marselli, L.; Masiellom, P.; Marchetti, P. Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 2009, 52, 1083-1086.
59. Kang, R.; Zeh, H.J.; Lotze, M.T.; Tang, D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011, 18, 571-580.
60. Bazzano, L.A.; Li, T.Y.; Joshipura, K.J.; Hu, F.B. Intake of fruit, vegetables, and fruit juices and risk of diabetes in women. Diabetes Care 2008, 31, 1311-1317. doi: 10.2337/dc08-0080.
61. de Souza CG, Sattler JA, de Assis AM, Rech A, Perry ML, Souza DO. Metabolic effects of sulforaphane oral treatment in streptozotocin-diabetic rats. Journal of medicinal food. 2012;15(9):795-801.
62. Negi G, Kumar A, Sharma SS. Nrf2 and NF-kappaB modulation by sulforaphane counteracts multiple manifestations of diabetic neuropathy in rats and high glucose-induced changes. Current neurovascular research. 2011;8(4):294-304.
63. Matsui T, Nakamura N, Ojima A, Nishino Y, Yamagishi SI. Sulforaphane reduces advanced glycation end products (AGEs)-induced inflammation in endothelial cells and rat aorta. Nutrition, metabolism, and cardiovascular diseases : NMCD. 2016;26(9):797-807.
64. Shang G, Tang X, Gao P, Guo F, Liu H, Zhao Z, et al. Sulforaphane attenuation of experimental diabetic nephropathy involves GSK-3 beta/Fyn/Nrf2 signaling pathway. The Journal of nutritional biochemistry. 2015;26(6):596-606.
65. Paro M, Prashar A, Prosdocimi M, Cherian PV, Fiori MG, Sima AA. Urinary bladder dysfunction in the BB/W diabetic rat: effect of ganglioside treatment on functional and structural alterations. The Journal of urology. 1994;151(3):781-6.
66. Chien CT, Chien HF, Cheng YJ, Chen CF, Hsu SM. Renal afferent signaling diuretic response is impaired in streptozotocin-induced diabetic rats. Kidney international. 2000;57(1):203-14.
67. Tomechko SE, Liu G, Tao M, Schlatzer D, Powell CT, Gupta S, et al. Tissue specific dysregulated protein subnetworks in type 2 diabetic bladder urothelium and detrusor muscle. Molecular & cellular proteomics : MCP. 2015;14(3):635-45.
68. Olisetty S, Traylor A, Zarjou A, Johnson MS, Benavides GA, Ricart K, et al. Mitochondria-targeted heme oxygenase-1 decreases oxidative stress in renal epithelial cells. American journal of physiology Renal physiology. 2013;305(3):F255-64.
69. Petronilli V, Costantini P, Scorrano L, Colonna R, Passamonti S, Bernardi P. The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. The Journal of biological chemistry. 1994;269(24):16638-42.
70. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275(5303):1132-6.
71. Madesh M, Hajnoczky G. VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. The Journal of cell biology. 2001;155(6):1003-15.
72. Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, et al. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(25):14681-6.
73. Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, et al. The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. The Journal of experimental medicine. 1998;187(8):1261-71.
74. Kengo Yamawaki, Hironori Kanda, Ryutaro Shimazaki, Nrf2 activator for the treatment of kidney diseases, Toxicology and Applied Pharmacology, Volume 360, 2018, Pages 30-37
75. Santos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI, Zhu X. Alzheimer's disease: diverse aspects of mitochondrial malfunctioning Int J Clin Exp Pathol. 2010; 3: 570-81.
76. Santos RX, Correia SC, Alves MG, Oliveira PF, Cardoso S, Carvalho C, Duarte AI, Santos MS, Moreira PI. Insulin therapy modulates mitochondrial dynamics and biogenesis, autophagy and tau protein phosphorylation in the brain of type 1 diabetic rats. Biochim Biophys Acta. 2014 ;1842(7):1154-66. doi: 10.1016/j.bbadis.2014.04.011. Epub 2014 Apr 18.
77. Chen S, Zhu Y, Liu Z, Gao Z, Li B, Zhang D, et al. Grape Seed Proanthocyanidin Extract Ameliorates Diabetic Bladder Dysfunction via the Activation of the Nrf2 Pathway. PloS one. 2015;10(5):e0126457.
78. Niture SK, Jaiswal AK. Inhibitor of Nrf2 (INrf2 or Keap1) protein degrades Bcl-xL via phosphoglycerate mutase 5 and controls cellular apoptosis. The Journal of biological chemistry. 2011;286(52):44542-56.
79. Stepkowski TM, Kruszewski MK. Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis. Free radical biology & medicine. 2011;50(9):1186-95.
80. Zheng H, Whitman SA, Wu W, Wondrak GT, Wong PK, Fang D, et al. Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes. 2011;60(11):3055-66.
81. Li W, Khor TO, Xu C, Shen G, Jeong WS, Yu S, et al. Activation of Nrf2-antioxidant signaling attenuates NF kappa B-inflammatory response and elicits apoptosis. Biochem Pharmacol. 2008;76(11):1485-9.
82. Yoo KS, Lee EJ, Patil BS. Quantification of quercetin glycosides in 6 onion cultivars and comparisons of hydrolysis-HPLC and spectrophotometric methods in measuring total quercetin concentrations. J Food Sci. (2010)
83. Boyer, Jeanelle, and Rui Hai Liu. “Apple phytochemicals and their health benefits.” Nutrition journal vol. 3 5. 12 May. 2004, doi:10.1186/1475-2891-3-5
84. Wang P, Heber D, Henning SM. Quercetin increased bioavailability and decreased methylation of green tea polyphenols in vitro and in vivo. Food Funct. (2012)
85. Jackson TS, et al. Ascorbate prevents the interaction of superoxide and nitric oxide only at very high physiological concentrations. Circ Res. (1998)
86. Y fanti C, et al. Role of vitamin C and E supplementation on IL-6 in response to training. J Appl Physiol. (2012)
87. Ashor AW, et al. Effects of vitamin C supplementation on glycaemic control: a systematic review and meta-analysis of randomised controlled trials. Eur J Clin Nutr. (2017)
88. Cao G1, Alessio HM, Cutler RG. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic Biol Med. 1993 Mar;14(3):303-11.
89. Satoshi Ohtake, Y. John Wang. Trehalose: Current Use and Future Application. Journal of Pharmaceutical Sciences, Volume 100, Issue 6, June 2011, Pages 2020-2053
90. LIU Wen-bo, TAN Xiao-bin, et al. Research approach on chemoprevention of Chinese materia medica via Nrf2 signal pathway. Chinese Traditional and Herbal Drugs. 0253 - 2670(2011)07 - 1429 - 06