研究生: |
蕭姵臻 Hsiao, Pei-Chen |
---|---|
論文名稱: |
急性健身運動對早產兒執行功能之影響:事件關聯電位研究 Effect of Acute Exercise on Executive Functions in Children with Preterm Birth: An ERP Study |
指導教授: |
張育愷
Chang, Yu-Kai |
口試委員: |
洪聰敏
Hung, Tsung-Min 洪巧菱 Hung, Chiao-Ling |
口試日期: | 2021/06/29 |
學位類別: |
碩士 Master |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 急性健身運動 、早產 、執行功能 、作業轉換 |
英文關鍵詞: | acute exercise, preterm birth, executive function, task switching |
研究方法: | 準實驗設計法 、 比較研究 |
DOI URL: | http://doi.org/10.6345/NTNU202101284 |
論文種類: | 學術論文 |
相關次數: | 點閱:120 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來許多研究已針對典型發展兒童與各種不同族群之孩童進行急性健身運動介 入研究,也發現急性健身運動介入對執行功能帶來正面效益,但仍較少研究針對早產兒 族群進一步做探討,而早產兒占新生兒比例居高不下,研究指出早產可能對執行功能有 負面影響,故本研究欲能藉由急性健身運動介入改善早產兒執行功能表現。本研究目的 為:(一)急性健身運動對早產兒及足月出生孩童作業轉換表現之影響。(二)急性健身 運動對早產兒及足月出生孩童作業轉換所誘發之事件關聯電位 P3 振幅之影響。本研究 假設為:(一)相較於足月出生孩童,急性健身運動對早產兒作業轉換表現之效益較大。 (二)相較於足月出生孩童,急性健身運動對早產兒作業轉換所誘發之 P3 振幅較大。 本實驗招募 25 名 10~16 歲早產孩童與 25 名 10~16 歲足月出生孩童;兩組皆進行 30 分鐘有氧運動介入與觀看影片之控制情境,介入後進行執行功能檢測。本研究結果顯示, 無論有無運動介入,兩組反應時間與準確率之同質情境優於異質情境、非轉換情境優於 轉換情境。在運動介入後,局部性作業轉換之反應時間較短與準確率較高,全面性作業 轉換與局部性作業轉換之 P3 振幅大於控制情境。本研究發現運動介入無論是在早產兒 或是足月出生孩童對執行功能與事件關聯電位皆有正面效益。因此鼓勵孩童有規律有氧 健身運動,可能可以提升認知功能表現。
Recently, many research have been conducted with regard to acute exercise intervention studies targeting typically developing children and special population. Meanwhile, previous studies have shown that acute exercise has positive effects on executive function, there are still relatively few studies have explored the preterm population. Due to the fact that premature babies account for a high proportion of newborns, and studies have pointed out that preterm birth may have a negative impact on executive function, therefore, this study concerning acute exercise was expected to improve executive function performance of children born preterm. The purpose of this study was to investigate the effects of acute exercise on task switching performance and electrophysiological indices in preterm born and full-term children. It was hypothesized that preterm born children would receive a lager acute exercise-elicited compared to the full-term children. The 25 preterm born children and 25 full-term children, aged 10-16 years, were engaged in a 30-min intervention that consisted of either acute stationary cycling exercise or watching a video on alternative day. The cognitive test was assessed after an intervention. The results revealed that, 30-min treatment or no-treatment control conditions resulted in shorter response time and increased accuracy rates for the homogeneous session and the non-switch condition compared with the heterogeneous session and the switch condition, regardless of group. After the exercise intervention, exhibited faster response times and more accuracy in global switch. Similarly, larger P3 amplitudes were observed in exercise condition compared to the control condition in both global switch and local switch. These findings suggest that acute exercise-induced improvements in executive function and neurophysiological status of preterm born or full-term children. We recommend can use regular aerobic exercise to improve cognitive performance of children.
衛生福利部國民健康署 (2019)。出生通報統計年報。取自衛生部國民健康署(https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=649&pid=13646)。
馮勝賢、陳豐慈、陳代聖、粘瑞狄、張育愷 (2018)。中等強度急性健身運動對早產兒計畫執行功能之影響。大專體育學刊, 20(1), 16-28.
Agrawal, S., Rao, S. C., Bulsara, M. K., & Patole, S. K. (2018). Prevalence of Autism spectrum disorder in preterm infants: A meta-analysis. Pediatrics, 142(3).
Allotey, J., Zamora, J., Cheong-See, F., Kalidindi, M., Arroyo-Manzano, D., Asztalos, E., . . . Thangaratinam, S. (2018). Cognitive, motor, behavioural and academic performances of children born preterm: a meta-analysis and systematic review involving 64 061 children. An International Journal of Obstetrics & Gynaecology, 125(1), 16-25.
Alvarez-Bueno, C., Pesce, C., Cavero-Redondo, I., Sanchez-Lopez, M., Martínez-Hortelano, J. A., & Martinez-Vizcaino, V. (2017). The effect of physical activity interventions on children’s cognition and metacognition: A systematic review and meta-analysis. Journal of the American Academy of Child & Adolescent Psychiatry, 56(9), 729-738.
Anderson, P. J., & Doyle, L. W. (2008). Cognitive and educational deficits in children born extremely preterm. Paper presented at the Seminars in Perinatology.
Benzing, V., Chang, Y. K., & Schmidt, M. (2018). Acute physical activity enhances executive functions in children with ADHD. Scientific reports, 8(1), 12382.
Blencowe, H., Cousens, S., Oestergaard, M. Z., Chou, D., Moller, A. B., Narwal, R., . . . Lawn, J. E. (2012). National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet, 379(9832), 2162-2172.
Borg, G. (1998). Borg's perceived exertion and pain scales: Human kinetics.
Breeman, L. D., Jaekel, J., Baumann, N., Bartmann, P., & Wolke, D. (2015). Preterm cognitive function into adulthood. Pediatrics, 136(3), 415-423.
Brumbaugh, J. E., Conrad, A. L., Lee, J. K., DeVolder, I. J., Zimmerman, M. B., Magnotta, V. A., . . . Nopoulos, P. C. (2016). Altered brain function, structure, and developmental trajectory in children born late preterm. Pediatric Research, 80(2), 197.
Chang, Y. K., Liu, S., Yu, H. H., & Lee, Y. H. (2012). Effect of acute exercise on executive function in children with attention deficit hyperactivity disorder. Archives of Clinical Neuropsychology, 27(2), 225-237.
Chen, A. G., Yan, J., Yin, H. C., Pan, C. Y., & Chang, Y. K. (2014). Effects of acute aerobic exercise on multiple aspects of executive function in preadolescent children. Psychology of Sport and Exercise, 15(6), 627-636.
Cheng, E. R., Kotelchuck, M., Gerstein, E. D., Taveras, E. M., & Poehlmann-Tynan, J. (2016). Postnatal depressive symptoms among mothers and fathers of infants born preterm: Prevalence and impacts on children's early cognitive function. Journal of Developmental and Behavioral Pediatrics, 37(1), 33-42.
Chu, C. H., Kramer, A. F., Song, T. F., Wu, C. H., Hung, T. M., & Chang, Y. K. (2017). Acute exercise and neurocognitive development in preadolescents and young adults: An ERP study. Neural plasticity, 2017.
Clemm, H. H., Vollsaeter, M., Roksund, O. D., Eide, G. E., Markestad, T., & Halvorsen, T. (2014). Exercise capacity after extremely preterm birth. Development from adolescence to adulthood. Annals of the American Thoracic Society, 11(4), 537-545.
D'Onofrio, B. M., Class, Q. A., Rickert, M. E., Larsson, H., Langstrom, N., & Lichtenstein, P. (2013). Preterm birth and mortality and morbidity: A population-based quasi-experimental study. JAMA Psychiatry, 70(11), 1231-1240.
de Greeff, J. W., Bosker, R. J., Oosterlaan, J., Visscher, C., & Hartman, E. (2018). Effects of physical activity on executive functions, attention and academic performance in preadolescent children: A meta-analysis. Journal of science and medicine in sport, 21(5), 501-507.
de Mello, R. R., Rodrigues Reis, A. B., & da Silva, K. S. (2017). Cognitive performance of premature infants: association between bronchopulmonary dysplasia and cognitive skills. Cross-sectional study. Sao Paulo Medical Journal, 135(4), 383-390.
Donchin, E., & Coles, M. G. (1988). Is the P300 component a manifestation of context updating? Behavioral and brain sciences, 11(3), 357-374.
Drollette, E. S., Scudder, M. R., Raine, L. B., Moore, R. D., Saliba, B. J., Pontifex, M. B., & Hillman, C. H. (2014). Acute exercise facilitates brain function and cognition in children who need it most: An ERP study of individual differences in inhibitory control capacity. Developmental cognitive neuroscience, 7, 53-64.
Dupin, R., Laurent, J. P., Stauder, J. E., & Saliba, E. (2000). Auditory attention processing in 5-year-old children born preterm: Evidence from event-related potentials. Developmental medicine and child neurology, 42(7), 476-480.
Engle, W. A. (2004). Age terminology during the perinatal period. Pediatrics, 114(5), 1362-1364.
Eston, R. (2012). Use of ratings of perceived exertion in sports. International journal of sports physiology and performance, 7(2), 175-182.
Everts, R., Schöne, C. G., & Mürner-Lavanchy, I. S., M. . (2019). Development of executive functions from childhood to adolescence in very preterm-born individuals-A longitudinal study. Early Human Development, 129, 45-51.
Herrmann, D. J., Yoder, C. Y., Gruneberg, M., & Payne, D. G. (2006). Applied cognitive psychology: A textbook: Lawrence Erlbaum Associates Publishers.
Hillman, C. H., Pontifex, M. B., Raine, L. B., Castelli, D. M., Hall, E. E., & Kramer, A. F. (2009). The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience, 159(3), 1044-1054.
Huang, C. J., Huang, C. W., Hung, C. L., Tsai, Y. J., Chang, Y. K., Wu, C. T., & Hung, T. M. (2018). Effects of acute exercise on resting EEG in children with Attention-Deficit/Hyperactivity Disorder. Child Psychiatry & Human Development, 49(6), 993-1002.
Hung, C. L., Huang, C. J., Tsai, Y. J., Chang, Y. K., & Hung, T. M. (2016). Neuroelectric and behavioral effects of acute exercise on task switching in children with Attention-Deficit/Hyperactivity Disorder. Frontiers in psychology, 7, 1589.
Jaeger, D. A., Gawehn, N., Schölmerich, A., Schneider, D. T., & Suchan, B. (2019). Reduction of the event-related potential P3 in preterm born 5-year-old healthy children. Clinical Neurophysiology, 130(5), 675-682.
Jarjour, I. T. (2015). Neurodevelopmental outcome after extreme prematurity: A review of the literature. Pediatric Neurology, 52(2), 143-152.
Johnson, S., Hennessy, E., Smith, R., Trikic, R., Wolke, D., & Marlow, N. (2009). Academic attainment and special educational needs in extremely preterm children at 11 years of age: The EPICure study. Archives of Disease in Childhood-Fetal and Neonatal Edition, 94(4), F283-F289.
Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching--a review. Psychological Bulletin, 136(5), 849-874.
Lox, C. L., Ginis, K. A. M., & Petruzzello, S. J. (2016). The psychology of exercise: Integrating theory and practice: Taylor & Francis.
Ludyga, S., Brand, S., Gerber, M., Weber, P., Brotzmann, M., Habibifar, F., & Pühse, U. (2017). An event-related potential investigation of the acute effects of aerobic and coordinative exercise on inhibitory control in children with ADHD. Developmental cognitive neuroscience, 28, 21-28.
Ludyga, S., Gerber, M., Mücke, M., Brand, S., Weber, P., Brotzmann, M., & Pühse, U. (2018). The acute effects of aerobic exercise on cognitive flexibility and task-related heart rate variability in children with ADHD and healthy controls. Journal of attention disorders, 1087054718757647.
Ludyga, S., Pühse, U., Gerber, M., Mücke, M., Lemola, S., Mori, A. C., . . . Weber, P. (2021). Very preterm birth and cognitive control: The mediating roles of motor skills and physical fitness. Developmental cognitive neuroscience, 49, 100956.
Maltais, D. B., Gane, C., Dufour, S. K., Wyss, D., Bouyer, L. J., McFadyen, B. J., . . . Voisen, J. I. (2016). Acute physical exercise affects cognitive functioning in children with cerebral palsy. Pediatric Exercise Science, 28(2), 304-311.
McCarthy, G., & Donchin, E. (1981). A metric for thought: A comparison of P300 latency and reaction time. Science, 211(4477), 77-80.
Mierau, A., Hülsdünker, T., Mierau, J., Hense, A., Hense, J., & Strüder, H. K. (2014). Acute exercise induces cortical inhibition and reduces arousal in response to visual stimulation in young children. International Journal of Developmental Neuroscience, 34, 1-8.
Miklós, M., Komáromy, D., Futó, J., & Balázs, J. (2020). Acute Physical Activity, Executive Function, and Attention Performance in Children with Attention-Deficit Hyperactivity Disorder and Typically Developing Children: An Experimental Study. International Journal of Environmental Research and Public Health, 17(11).
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100.
Monica, F., Gabriele, G., & Coles, M. (2000). Event-related brain potentials: Methods, theory. Handbook of psychophysiology, 53-84.
Murray, A. L., Scratch, S. E., Thompson, D. K., Inder, T. E., Doyle, L. W., Anderson, J. F., & Anderson, P. J. (2014). Neonatal brain pathology predicts adverse attention and processing speed outcomes in very preterm and/or very low birth weight children. Neuropsychology, 28(4), 552-562.
Nosarti, C., Nam, K. W., Walshe, M., Murray, R. M., Cuddy, M., Rifkin, L., & Allin, M. P. (2014). Preterm birth and structural brain alterations in early adulthood. NeuroImage: Clinical, 6, 180-191.
Nyman, A., Korhonen, T., Munck, P., Parkkola, R., Lehtonen, L., & Haataja, L. (2017). Factors affecting the cognitive profile of 11-year-old children born very preterm. Pediatric Research, 82(2), 324-332.
Olsen, A., Dennis, E. L., Evensen, K. A. I., Husby Hollund, I. M., Lohaugen, G. C. C., Thompson, P. M., . . . Haberg, A. K. (2018). Preterm birth leads to hyper-reactive cognitive control processing and poor white matter organization in adulthood. Neuroimage, 167, 419-428.
Paschen, L., Lehmann, T., Kehne, M., & Baumeister, J. (2019). Effects of Acute Physical Exercise With Low and High Cognitive Demands on Executive Functions in Children: A Systematic Review. Pediatric Exercise Science, 31(3), 267-281.
Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., . . . Rugg, M. D. (2000). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37(2), 127-152.
Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148.
Polich, J., & Criado, J. R. (2006). Neuropsychology and neuropharmacology of P3a and P3b. International Journal of Psychophysiology, 60(2), 172-185.
Pontifex, M. B., McGowan, A. L., Chandler, M. C., Gwizdala, K. L., Parks, A. C., Fenn, K., & Kamijo, K. (2019). A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychology of Sport and Exercise, 40, 1-22.
Pontifex, M. B., Saliba, B. J., Raine, L. B., Picchietti, D. L., & Hillman, C. H. (2013). Exercise improves behavioral, neurocognitive, and scholastic performance in children with attention-deficit/hyperactivity disorder. Journal of Pediatrics, 162(3), 543-551.
Retzler, J., Johnson, S., Groom, M., Hollis, C., Budge, H., & Cragg, L. (2019). Cognitive predictors of parent-rated inattention in very preterm children: The role of working memory and processing speed. Child Neuropsychology, 25(5), 617-635.
Rommel, A. S., James, S. N., McLoughlin, G., Brandeis, D., Banaschewski, T., Asherson, P., & Kuntsi, J. (2017). Altered EEG spectral power during rest and cognitive performance: A comparison of preterm-born adolescents to adolescents with ADHD. European child & adolescent psychiatry, 26(12), 1511-1522.
Stålnacke, J., Lundequist, A., Böhm, B., Forssberg, H., & Smedler, A. C. (2019). A longitudinal model of executive function development from birth through adolescence in children born very or extremely preterm. Child Neuropsychology, 25(3), 318-335.
Svedenkrans, J., Kowalski, J., Norman, M., & Bohlin, K. (2016). Low Exercise Capacity Increases the Risk of Low Cognitive Function in Healthy Young Men Born Preterm: A Population-Based Cohort Study. PLoS One, 11(8), e0161314.
van Houdt, C. A., Oosterlaan, J., van Wassenaer‐Leemhuis, A. G., van Kaam, A. H., & Aarnoudse‐Moens, C. S. (2019). Executive function deficits in children born preterm or at low birthweight: A meta‐analysis. Developmental Medicine & Child Neurology.
Vogt, T., Schneider, S., Anneken, V., & Strüder, H. K. (2013). Moderate cycling exercise enhances neurocognitive processing in adolescents with intellectual and developmental disabilities. Research in developmental disabilities, 34(9), 2708-2716.
Weng, T. B., Pierce, G. L., Darling, W. G., Falk, D., Magnotta, V. A., & Voss, M. W. (2017). The acute effects of aerobic exercise on the functional connectivity of human brain networks. Brain Plasticity, 2(2), 171-190.