簡易檢索 / 詳目顯示

研究生: 陳朝生
chao-sheng chen
論文名稱: 螢光奈米鑽石在生物顯影上的應用
指導教授: 張煥正
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 48
中文關鍵詞: 螢光奈米鑽石
論文種類: 學術論文
相關次數: 點閱:231下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由typeIb奈米鑽石粉末照射高能量離子束使其產生可在~700nm放出紅色的螢光的NV– 及NVO缺陷中心(defect center),我們稱此鑽石為螢光奈米鑽石(fluorescent nanodiamond)。因為鑽石對生物沒有毒性、生物相容性高、且可輕易在表面做修飾反應,又經過雷射激發後鑽石內的缺陷中心所放出近紅外波段的螢光有比較好的組織穿透度,所以很適合運用於生物顯像上的研究。
      所以本篇論文中,我們使用螢光奈米鑽石來做HeLa細胞的標記(cell label),並且藉由流式細胞儀(flow cytometer)來對在Hela細胞體內的螢光奈米鑽石作定量分析並探討螢光奈米鑽石進入細胞之機制,然後透過細胞活性的測試,以證實製造出的螢光奈米鑽石對細胞有無毒性。此外再透過修飾螢光奈米鑽石的表面來攜帶運送DNA至細胞體內並觀察分布狀態。為了要達成對多細胞的生物有機體活體顯像之目的,我們採取餵食線蟲的方式來標記其消化系統及注射至線蟲之生殖腺(gonad)再經由生殖的過程(oogenesis)來標記其胚胎。

    目錄 中文摘要 2 Abstract 3 1.序論 4 1-1前言 4 1-2鑽石 6 1-3鑽石內的缺陷中心(Defect center) 8 1-4生物樣品 11 1-4-1 HeLa cell 11 1-4-2秀麗隱桿線蟲(Caenorhabditis elegans,以下簡稱C. elegans) 1-5研究動機 13 2. 實驗儀器 15 2-1掃描式雷射共焦顯微鏡(Confocal laser scanning microscopy) 15 2-2流式細胞儀(Flow cytometer) 16 3.實驗方法 18 3-1製作螢光奈米鑽石 18 3-2螢光奈米鑽石螢光光譜測量 21 3-3 螢光奈米鑽石應用於細胞標記(Cell label) 22 3-4 細胞活性測試 25 3-5 表面修飾螢光奈米鑽石以輸送DNA及其在細胞內之分布 25 3-6以螢光奈米鑽石標記線蟲(C. elegans) 27 4.結果與討論 30 4-1螢光奈米鑽石的螢光光譜及物理性質 30 4-2觀測以螢光奈米鑽石標記的HeLa cell 32 4-3研究細胞吞噬FND的機制 34 4-4細胞活性 38 4-5輸送DNA及其細胞內之分布 38 4-6 螢光奈米鑽石in vivo 標記線蟲(C. elegans) 41 5.結論 45 6.參考文獻 46

    1. Huang, H.; Pierstorff, E.; Osawa, E.; Ho, D., Active Nanodiamond Hydrogels for Chemotherapeutic Delivery. Nano Letters 2007, 7 (11), 3305-3314.
    2. Lu, C.-W.; Hung, Y.; Hsiao, J.-K.; Yao, M.; Chung, T.-H.; Lin, Y.-S.; Wu, S.-H.; Hsu, S.-C.; Liu, H.-M.; Mou, C.-Y.; Yang, C.-S.; Huang, D.-M.; Chen, Y.-C., Bifunctional Magnetic Silica Nanoparticles for Highly Efficient Human Stem Cell Labeling. Nano Letters 2007, 7 (1), 149-154.
    3. Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M., Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2003, 2 (9), 630-638.
    4. Zhang, H.; Yee, D.; Wang, C., Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine 2008, 3 (1), 83-91.
    5. Shcherbo, D.; Merzlyak, E. M.; Chepurnykh, T. V.; Fradkov, A. F.; Ermakova, G. V.; Solovieva, E. A.; Lukyanov, K. A.; Bogdanova, E. A.; Zaraisky, A. G.; Lukyanov, S.; Chudakov, D. M., Bright far-red fluorescent protein for whole-body imaging. Nat Meth 2007, 4 (9), 741-746.
    6. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005, 4 (6), 435-446.
    7. Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N., Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Letters 2004, 4 (1), 11-18.
    8. Schrand, A. M.; Huang, H.; Carlson, C.; Schlager, J. J.; ?sawa, E.; Hussain, S. M.; Dai, L., Are Diamond Nanoparticles Cytotoxic? The Journal of Physical Chemistry B 2007, 111 (1), 2-7.
    9. Fu, C.-C.; Lee, H.-Y.; Chen, K.; Lim, T.-S.; Wu, H.-Y.; Lin, P.-K.; Wei, P.-K.; Tsao, P.-H.; Chang, H.-C.; Fann, W., Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proceedings of the National Academy of Sciences 2007, 104 (3), 727-732.
    10. Yu, S.-J.; Kang, M.-W.; Chang, H.-C.; Chen, K.-M.; Yu, Y.-C., Bright Fluorescent Nanodiamonds:  No Photobleaching and Low Cytotoxicity. Journal of the American Chemical Society 2005, 127 (50), 17604-17605.
    11. Davies, G.; Hamer, M. F., Optical Studies of the 1.945 eV Vibronic Band in Diamond. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 1976, 348 (1653), 285-298.
    12. F. Jelezko, J. W., Single defect centres in diamond: A review. physica status solidi (a) 2006, 203 (13), 3207-3225.
    13. Vins, V. G.; Pestryakov, E. V., Color centers in diamond crystals: Their potential use in tunable and femtosecond lasers. Diamond and Related Materials 2006, 15 (4-8), 569-571.
    14. Huang, L.-C. L.; Chang, H.-C., Adsorption and Immobilization of Cytochrome c on Nanodiamonds. Langmuir 2004, 20 (14), 5879-5884.
    15. Delfini, C.; Alfani, E.; De Venezia, V.; Oberholtzer, G.; Tomasello, C.; Eremenko, T.; Volpe, P., Cell-cycle dependence and properties of the HeLa cell DNA polymerase system. Proceedings of the National Academy of Sciences of the United States of America 1985, 82 (8), 2220-2224.
    16. Nadine Wong Shi Kam, Z. L., Hongjie Dai,, Carbon Nanotubes as Intracellular Transporters for Proteins and DNA: An Investigation of the Uptake Mechanism and Pathway13. Angewandte Chemie International Edition 2006, 45 (4), 577-581.
    17. Daukas, G.; Zigmond, S., Inhibition of receptor-mediated but not fluid-phase endocytosis in polymorphonuclear leukocytes. J. Cell Biol. 1985, 101 (5), 1673-1679.
    18. Heuser, J.; Anderson, R., Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J. Cell Biol. 1989, 108 (2), 389-400.
    19. McBain, S. C.; Yiu, H. H. P.; Haj, A. E.; Dobson, J., Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection. Journal of Materials Chemistry 2007, 17 (24), 2561-2565.
    20. Guan, J.; Lee, L. J., Generating highly ordered DNA nanostrand arrays. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (51), 18321-18325.
    21. Luo, D.; Saltzman, W. M., Synthetic DNA delivery systems. Nat Biotech 2000, 18 (1), 33-37.
    22. Daniels, B. R.; Masi, B. C.; Wirtz, D., Probing Single-Cell Micromechanics In Vivo: The Microrheology of C. elegans Developing Embryos. Biophysical Journal 2006, 90 (12), 4712-4719.

    無法下載圖示 本全文未授權公開
    QR CODE