簡易檢索 / 詳目顯示

研究生: 何麗安
Elica A. Heredia
論文名稱: 薄膜電晶體於低溫的量子現象
Quantum phenomena of thin-film transistors at cryogenic temperatures
指導教授: 江佩勳
Jiang, Pei-hsun
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 44
中文關鍵詞: weak localizationdouble gate a-IGZO
英文關鍵詞: weak localization, double gate a-IGZO
DOI URL: http://doi.org/10.6345/THE.NTNU.DP.003.2018.B04
論文種類: 學術論文
相關次數: 點閱:158下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This experiment focuses on the competition of weak localization (WL) and weak antilocalization (WAL) on a single gate and dual gate a-IGZO, these quantum interference effects on systems have been studied on a dual gate a-IGZO by varying the gate voltages (top gate and bottom gate), on the other hand, temperature and gate voltage were varied on a single gate a-IGZO to observe the competition between WL and WAL. The universal dependence of conductivity was partially unveiled on single gate a-IGZO and the full profile of this intriguing universal dependence was shown on the dual gate a-IGZO. It is speculated that the prefactor for WL (α0) and prefactor for WAL (α1) are determined by the ratio of the gap opening at the Dirac point to the fermi energy level, which can be manipulated via electric gating. This work hopes to help build a theoretical model and attract theoretical contributions that should be a great advantage in future applications in nanoelectronics and spintronics.

    Chapter 1 Introduction.....7 1.1 Thin Film Transistor (TFT)......7 1.1.1 a-IGZO single gate TFT........8 1.1.2 a-IGZO dual gate TFT.........9 1.2 Weak localization (WL) and Weak antilocalization (WAL)........10 Chapter 2 Parameters and equations.........13 Chapter 3 Experimental methods and Instruments........14 3.1 Photolithography.......14 3.2 Thermal evaporator........17 3.3 Wire Bonding.........18 3.4 Refrigerator.........21 3.5 Source meter.........22 Chapter 4 Sample Structure........23 4.1 a-IGZO single gate TFT........23 4.2 a-IGZO dual TFT.........24 Chapter 5 Results and Discussion........25 5.1 a-IGZO single gate TFT.........25 5.1.1 Electrical characteristics of a-IGZO single gate TFT.......25 5.1.2 Competition between WL and WAL of a-IGZO single gate TFT.........26 5.1.2.1 Temperature controlled.........26 5.1.2.2 Voltage controlled.........27 5.2 a-IGZO dual gate TFT.........32 5.2.1 Electrical characteristics of a-IGZO dual gate TFT.........32 5.2.2 Competition between WL and WAL of a-IGZO dual gate TFT........34 5.3 Low-temperature polycrystalline silicon (LTPS).........38 Chapter 6 Conclusion........41 Chapter 7 References........42

    1. Nomura, K., et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004. 432(7016): p. 488-492
    2. Seo, D., et al., Fully transparent InGaZnO thin film transistors using indium tin oxide/graphene multilayer as source/drain electrodes. Appl. Phys. Lett., 2010. 97(17): p. 172106-1- 172106-3
    3. Gadre, M. J., et.al., Highest transmittance and high-mobility amorphous indium gallium zinc oxide films on flexible substrate by room-temperature deposition and post-deposition anneals. Appl. Phys. Lett., 2011. 99(5): p. 051901-1- 051901-3
    4. Chen, M.-C., et. al., A low-temperature method for improving the performance of sputter- deposited ZnO thin-film transistors with supercritical fluid. Appl. Phys. Lett., 2009. 94(16): p. 162111-1-162111-3
    5. Na, J. H., et.al., High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes. Appl. Phys. Lett., 2008. 93(6): p. 063501-1-063501-3
    6. Kim, M., et.al., High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper. Appl. Phys. Lett., 2007. 90(21): p. 212114-1-212114-3
    7. Han, S.-Y., et.al., Inkjet-Printed High Mobility Transparent–Oxide Semiconductors. J. Disp. Technol., 2009. 5(12): p. 520-524
    8. Kamiya, T., et.al., Electronic Structures Above Mobility Edges in Crystalline and Amorphous In- Ga-Zn-O: Percolation Conduction Examined by Analytical Model. J. Disp. Technol., 2009. 5(12): p. 462-467
    9. Suresh, A., et.al., Transparent, high mobility InGaZnO thin films deposited by PLD. Thin Solid Films, 2008. 516(7): p. 1326-1329
    10. Su, L.-Y., et.al., Characterizations of amorphous IGZO thin-film transistors with low subthreshold swing. IEEE Electron Device Lett., 2011. 32(9): p. 1245-1247
    11. Chen, T. C., et.al., Investigating the degradation behavior caused by charge trapping effect under DC and AC gate-bias stress for InGaZnO thin film transistor. Appl. Phys. Lett. 2011. 99(2): p. 022104-1- 022104-3
    12. Kang, D., et.al., Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules. Appl. Phys. Lett., 2007. 90(19): p. 192101-1-192101-3.
    13. Park, J. S., et.al., Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Appl. Phys. Lett. 2008. 92(7): p. 072104-1-072104-3.
    14. Shinozaki, B., et.al., Crossover from weak localization to anti-weak localization in indium oxide systems with wide range of resistivity. J. Appl. Phys., 2013. 113(15): p. 153707-1-153707-6.
    15. Yabuta, H., et.al., Microscopic structure and electrical transport property of sputter-deposited amorphous indium-gallium-zinc oxide semiconductor films. J. Phys.: Conf. Ser., 2014. 518: p. 012001-1-012001-27.
    16. Lu, H. Z., et.al., Competition between Weak Localization and Antilocalization in Topological Surface States. Phys. Rev. Lett., 2011. 107(7): p. 076801-1-076801-5.
    17. Lang, M., et al., Competing weak localization and weak antilocalization in ultrathin topological insulators. Nano Lett., 2013. 13(1): p. 48-53.
    18. Lim, H., et.al., Double gate GaInZnO thin film transistors. Appl. Phys. Lett., 2008. 93(6): p. 063505-1-063505-3.
    19. Son, K.-S., et.al., Characteristics of Double-Gate Ga–In–Zn–O Thin-Film Transistor. IEEE Electron Device Lett., 2010. 31(3): p. 219-221.
    20. Moraru, D., et.al., Transport spectroscopy of coupled donors in silicon nano-transistors. Nature, 2014. 4(6219): p. 1-6.
    21. Lu, H. Z., et.al., Weak localization of bulk channels in topological insulator thin films. Phys. Rev. B, 2011. 84(12): p. 125138-1-125138-8.
    22. Hikami, S., A.I. Larkin, and Y. Nagaoka, Spin-Orbit Interaction and Magnetoresistance in the Two Dimensional Random System. Progress of Theoretical Physics, 1980. 63(2): p. 707-710.
    23. Thompson, R., et al., Weak Localization and Electron-Electron Interactions in Indium-Doped ZnO Nanowires. Nano Lett. 2009. 9 (12) : p. 3991-3995.
    24. Tsai, M.-Y., et.al., Investigating the degradation behaviors for bottom/top gate sweep under negative bias illumination stress in dual gate InGaZnO thin film transistors. SID Digest 2015. 46 (1): p. 1147-1150.
    25. Wang, W.-H., et al., Competing weak localization and weak antilocalization in amorphous indium–gallium–zinc-oxide thin-film transistors. Applied Physics Letters, 2017. 110(2): p. 022106.
    26. Wang, W.-H., et al., Universal dependence on the channel conductivity of the competing weak localization and antilocalization in amorphous InGaZnO4 thin-film transistors. Applied Physics Express, 2017. 10(5): p. 051103.
    27. Liao, P._Y., et.al., Investigating degradation behavior of hole-trapping effect under static and dynamic gate-bias stress in a dual gate a-InGaZnO thin film transistor with etch stop layer. Thin Solid Films, 2016. 603 (31): p. 359-362.
    28. Rustagi, S. C., et.al., Low-Temperature Transport Characteristics and Quantum-Confinement Effects in Gate-All-Around Si-Nanowire N-MOSFET. IEEE Electron Device Lett., 2007. 28(10): p. 909-912.

    無法下載圖示 本全文未授權公開
    QR CODE