簡易檢索 / 詳目顯示

研究生: 陳冠至
CHEN KUAN-CHIH
論文名稱: 鋯合金R60702電漿銲件機械性質之研究
The mechanical properties of plasma arc welded Zirconium alloy R60702
指導教授: 鄭慶民
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 69
中文關鍵詞: 鋯合金電漿銲接R60702
論文種類: 學術論文
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討鋯合金R60702 2mm板材電漿電弧銲接後其機械性質之研究。藉由拉伸試驗檢驗母材與銲接過後伸長量、施力、工程應力與工程應變之差異,並求出其真實應力與真實應變數值。使用維氏硬度計量測母材、熱影響區與銲道之微硬度變化,並利用光學顯微鏡觀察上述區域間之金相組織變化。電子顯微鏡觀察拉伸試片之破斷面形態。
    根據實驗結果,所有拉伸試片均斷於母材,顯示銲接熔融區結合強度高於母材。此外,鋯合金R60702母材之抗拉強度、降伏強度、延伸率和硬度為497.95MPa、322.10 MPa、38.40%與161HV。經銲接後抗拉強度與伸長率略降至484.22 MPa與24.40%,然而銲接後抗拉強度已達原母材90%顯示銲接品質良好。金相觀察發現熔融區中心處產生樹枝狀組織導致該區維氏硬度值較熔融區的平均低;銲冠處則產生籃織狀組織,為冷卻較快所造成,故此處具有最大之維氏硬度值。最後,利用電子顯微鏡觀測拉伸試片銲接處破斷面,具有韌窩狀組織屬延性破壞。

    The purpose of this study is to investigate the plasma arc welding properties of the zircaloy R60702 thin 2mm by using the tensile test(including force, elongation, engineering stress and engineering strain), the micro-hardness, the optical microscopy(base metal, hot affect zone and fusion zone)and scanning electron microscopy(ductile or brittle fracture).
    Based on the experimental results, all of the tensile specimens ruptured in the base metal. Bonding strength of fusion zone was higher than that of base metal. In addition, the tensile strength, yield strength, elongation and hardness of the zircaloy R60702 sheet before welding was 497.95 MPa, 322.10 MPa, 38.40%, Hv161, respectively. After welding, the tensile strength and elongation of weld were 484.22 MPa and 24.40%, respectively. The tensile strength of the welding region was about 90% of the base metal. Thus, the yielding strength will be higher than base metal, while the percentage elongation will be lower than base metal. From the microstructure observation, the surface of fusion zone was all columnar dendritic. The center of fusion zone tends to basket weave. The fracture surface of tensile test specimens has the feature of dimple.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 1 1.3 研究方法 2 第二章 理論與文獻回顧 3 2.1 鋯與鋯合金特性與分類 3 2.1.1 鋯與鋯合金特性 3 2.1.2 鋯與鋯合金之抗腐蝕與腐蝕特性 7 2.1.3 鋯與鋯合金之冶煉方式[20] 12 2.1.4 鋯與鋯合金之分類 17 2.1.5 鋯與鋯合金之應用 19 2.1.6 鋯之銲接性 20 2.1.7 鋯與鋯合金之產業分析[30] 21 2.2 電漿銲接(Plasma arc welding) 22 2.2.1 電漿銲接定義與簡介 22 2.2.2 電漿銲接之原理 23 2.2.3 電漿銲接之銲接方式 24 2.2.4 電漿銲接之銲槍與電離氣體 27 2.2.5 電漿銲接參數 31 2.2.6 銲道與熱影響區 31 第三章 實驗設備與方法 34 3.1 實驗方法 34 3.1.1 實驗材料 34 3.1.2 實驗流程 34 3.2 實驗儀器與設備 35 3.2.1 電漿銲接設備 35 3.2.2 拉伸試驗機 35 3.2.3 光學顯微鏡 35 3.2.4 掃描式電子顯微鏡(SEM) 35 3.3 實驗方法與步驟 38 3.3.1 試片準備 38 3.3.2 電漿銲接參數設定 38 3.3.3 拉伸試件取樣與試件尺寸 39 3.3.4 試片金相之觀察 41 3.3.5 微硬度試驗 41 第四章 結果與討論 44 4.1 金相組織觀察 44 4.2 微硬度分析 48 4.3 拉伸試驗 51 4.4 電子顯微鏡檢測(SEM) 57 第五章 結論 63 5.1 結論 63 5.2 建議 64 參考文獻 65

    [1]A.M. Garde and E.R.Bradley., “Zirconium in the Nuclear Industry”, ASTM International, pp.5-35, 1994.
    [2]S. Watt., “Zirconium”, Marshall Cavendish, 2007.
    [3]M. Oskarsson., “Study on the mechanisms for corrosion and hydriding of Zircaloy”, Doctoral Thesis, Division of Mechanical Metallurgy Department of Materials Science and Engineering, Sweden Royal Institute of Technology, 2000.
    [4]C. Anghel., “Study on the mechanisms for corrosion and hydriding of Zircaloy”, Licentiate Thesis, Division of Mechanical Metallurgy Department of Materials Science and Engineering, Sweden Royal Institute of Technology, 2004.
    [5]W.H. Kearns., “Welding handbook”, American Welding Society, Vol.4, pp.473-477, 1984.
    [6]C.S. Young and C. Durham., “Industrial applications of Titanium and Zirconium”, ASTM International, Vol. 4, 1986
    [7]劉宏義、周棟勝、歐正章, “破裂機構中應力腐蝕破壞和氫脆的諧和效應” , 防蝕工程, pp.26-37, Vol.10, No.1, 1996.
    [8]趙政綱, “用過燃料護套劣化模式之建立”, 行政院核子能委員會, 委託研究計畫論文報告, pp.25-68, 2002.
    [9]http:// www.hudong.com/wiki/, 互動百科.
    [10]T.L. Yau., “Zr and Ti: complementary, sister metals”, ATI Wah Chang Allegheny Technologies, pp.8, Vol.13, No.1,1992.
    [11]R. A. Graham and R. C. Sutherlin., “Niobium’s role growing in the fight against corrosion”, ATI Wah Chang Allegheny Technologies, pp.4-5, Vol.23, No.2, 2002.
    [12] A. R. Shankar, V.R. Raju, M.N. Rao, U.K. Mudali, H.S. Khatak and B. Raj., “Corrosion of Zircaloy-4 and its welds in nitric acid medium”, Corrosion Science, Vol. 49, Issue 9, pp. 3527-3538, 2007.
    [13] E.W. Kleefisch., “Industrial Applications of Titanium and Zirconium”, ASTM International, pp191-202, 1981.
    [14]A. B. Goncharov., “Mechanical properties and corrosion resistance of weld joints of zirconium and its alloys”, Chemical and Petroleum Engineering, pp.625-628, Vol.24, No.11, 1985.
    [15]T.L. Yau and K. Bird., “Titanium or Zirconium? Which works better in acetic acid environments?”, ATI Wah Chang Allegheny Technologies, pp.3-6, Vol.13, No.4, 1992.
    [16]B. Cox., “Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys”, Journal of Nuclear Materials, Vol 336, Issues 2-3, pp. 331-368, 2005.
    [17]T.L. Yau., “Zircadyne succeeds where others materials fail: A study of stability and corrosivity of hydrogen peroxide”, ATI Wah Chang Allegheny Technologies, pp.3-4, Vol.12, No.1, 1991.
    [18] P.A. Schweitzer., “Corrosion Engineering Handbook”, Marcel dekker, pp195-252, 2007.
    [19]http://www.spfusa.com/metals.html, SPF Corporation of America.
    [20]黃建中、左禹, “材料的耐蝕性和腐蝕數據”, 化學工業出版社, pp.325-328, 2002.
    [21]蘇英源, “冶金學”,全華科技圖書, pp.7-34-7-39, 2000.
    [22]http://en.wikiedia.org/wiki, Wikipedia.
    [23] H. Rosenberg., “Zirconium Production and Refining”, Encyclopedia of Materials: Science and Technology, pp.9903-9904, 2008.
    [24]J.A.L. Robertson., “Zirconium—an international nuclear material”, Journal of Nuclear Materials, Vol.100, Issues 1-3, pp.108-118, 1981.
    [25]R. Marshall., “Proper planning the key for large scale projects requiring zirconium”, ATI Wah Chang Allegheny Technologies, Vol.18, No.4, pp.4-9, 1997.
    [26]K. Richardson., “Smith & Nephew Executive Recovers the Good Life with Zirconium Alloy Hip Replacement”, ATI Wah Chang Allegheny Technologies, Vol.26, No.1, pp.2-3, 2005.
    [27] D.S. Setty, R. Reddy and A. L. N. Murthy., “Resistance Butt Welding of Zirconium Alloy Material”, Materials and Manufacturing Processes, Vol. 23, No.8, pp.844-851, 2008.
    [28]R.A. Patterson., “Fundamentals of Explosion Welding”, ASM Handbook, Vol 6, pp.160-164, 1993.
    [29] D. L. Olson., “Welding of Zirconium Alloys”, ASM Handbook, Vol. 6, pp. 787-788, 1993.
    [30]S. Kirsch., “The switch is on”, ATI Wah Chang Allegheny Technologies, Vol.27, No.1, pp.10-13, 2006.
    [31]賴耿陽, “電漿工學的基礎”, 復文書局, pp.1-8, 2002.
    [32]周長彬、蔡丕椿、郭央諶,“銲接學”, 全華科技圖書, pp.63-67, 1988.
    [34]曾光宏, “電漿銲電弧之原理與應用”, 銲接與切割, Vol.9, No.1, pp.46-55, 1997.
    [35]園田弘文, “電漿銲電弧原理與電漿銲接應用”, 銲接與切割, Vol.7, No.4, pp.46-55, 1997.
    [36]E. Craig., “The plasma arc process-a review”, Welding Journal, Vol.67, No.2, pp.19-25, 1988.
    [37]周長彬, “精密銲接技術”, 隨堂講義, 國立交通大學機械工程系, 2007.
    [38]Z. Sun., “Fusion zone microstructures of laser and plasma welded dissimilar steel joints”, Material and Manufacturing Processes, Vol.14, No.1, pp.37-52, 1999.
    [39]蔡履文, 陳鈞, 鄭勝文, “穿孔模態電漿銲接”, Vol.3, No.3, pp.1-9, 1993.
    [40]鄭拯民, 蔡金泉, “電漿銲接法對各種金屬銲接施工之研究”, 研究發展專題, 中國造船股份有限公司, 1982.
    [41]W.C. Wang, L. W. Tasy, C. Chen and S. W. Cheng., “Study of process variable in plasma arc welding”, Chinese Journal of Materials Science, Vol.23, No.2, pp.108-114, 1991.
    [42]T. Mohandas and G.M. Reddy., “A comparison of continuous and pulse current gas tungsten arc welds of an ultra high strength steel”, Journal of Materials Processing Technology, Vol.69, pp.222-226, 1997.
    [43 ]曾光宏, 周長彬, “脈衝電流銲接對沃斯田鐵不鏽鋼銲件變形之影響”,銲接與切割, Vol.10, No.6, pp.69-75, 2000.
    [44]K. Easterling., “Introduction to the physical metallrugy of welding”, Butterworth Heinemann, 2nd edn, pp.126, 1992.
    [45]D. Askeland and P.P. Phule., “The science and engineering of materials”, Thomson, 2003.

    無法下載圖示 本全文未授權公開
    QR CODE