研究生: |
陳廷豪 Chen, Ting-Hao |
---|---|
論文名稱: |
無機鹵素鈣鈦礦/磁性金屬薄膜 -雙層異質結構之形貌、磁性及熱穩定性分析 Morphology, magnetism and thermal stability analysis of inorganic lead halide perovskite coated on ferromagnetic layer |
指導教授: |
林文欽
Lin, Wen-Chin |
口試委員: | 洪振湧 李亞儒 |
口試日期: | 2021/06/16 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 鈣鈦礦 、磁光柯爾 、表面形貌 、CsPbBr3 |
英文關鍵詞: | Perovskite, MOKE, AFM, CsPbBr3 |
研究方法: | 實驗設計法 、 行動研究法 、 比較研究 、 觀察研究 、 內容分析法 |
DOI URL: | http://doi.org/10.6345/NTNU202100484 |
論文種類: | 學術論文 |
相關次數: | 點閱:161 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這項研究中我們主要使用物理氣相沉積法(Physical vapor deposition, PVD)製備鐵鈀合金薄膜,並且利用旋轉塗佈法將鈣鈦礦(CsPbBr3)量子點旋塗於表面,接續觀察樣品在旋塗前後(CsPbBr3/FePd v.s FePd)的變化,包括表面形貌、光學及磁性,並且觀察不同退火溫度(100˚C ~ 180˚C)後的轉變。CsPbBr3/FePd在原子力顯微鏡(AFM)量測下,我們發現表面在經退火後粗糙度大致不變,且平均約為±10 nm高低且誤差值為1.5 nm。從掃描式電子顯微鏡(SEM)發現量子點為平均大小約11 nm的正方形,並且退火180˚C後有融合的現象。透過光致螢光(PL)的數據分析我們得知在退火100˚C後,光訊號強度下降了3/4,且發光波長有紅移4 nm的現象。最後經由磁光柯爾量測從室溫到退火160˚C,FePd樣品的矯頑場增加了74 %,而CsPbBr3/FePd樣品的矯頑場僅增加了19.2 %;由此結果方知CsPbBr3是一個可以保護磁性材料的覆蓋層。
In this study, we used the physical vapor deposition to prepare FePd alloy, and spin-coating to spread perovskite (CsPbBr3) quantum dots (QDS) on the surface. We characterized the surface of the spin-coated perovskite and bave FePd before and after. Various measurements are carried out, including surface morphology, optical and magnetic properties, after thermal annealing the sample from 100˚C to 180˚C. The AFM study shows that the surface roughness of the CsPbBr3/ FePd remained invaricant and the average value was about ± 10 nm. The SEM study shows that the QDS were of square cubic sample with an average size around 11 nm and aggregated after thermal annealing at 180˚C. PL measurement shows that the intensity of perovskite decreases by 75 % after thermal annealing at 100˚C, and there is a red shift in PL-spectram. The magnetic coercivity of CsPbBr3/ FePd was increased by 19 % without serious inter diffusion effect as compared with the pure FePd was increased by 74 % after thermal annealing (100 to 160 ˚C). The perovskite could serve as a good capping layer, and the interface between perovskite and ferromagnetic layer sustained with good thermal stability.
[1] 蘇青森(2004)。真空技術精華。高雄市:五南圖書。
[2] Soshin Chikazumi(1982)。磁性物理學。 張煦,李學養譯。台北市:聯經。
[3] 王萱(2019)。光激發鈣鈦礦量子點塔米電漿雷射。國立臺灣師範大學光電工程研究所2019,未出版,台北市。
[4] Ishihara, Tatsumi(2009). Perovskite oxide for solid oxide fuel cells.
[5] Jitao Li, Hongliang Zhao, Jie Li, Chenglong Zheng, Mengyao Li, Silei Wang, Kangyu Ren, Yating Zhang, Jianquan Yao. Photoresponse properties and energy gap of CsPbBr3–CsPb2Br5 compound thin flm prepared by one step thermal evaporation method. Journal of Materials Science: Materials in Electronics (2020) 31:4956–4962
[6] 陳建淼,洪連輝。科學online (https://highscope.ch.ntu.edu.tw/wordpress/?p=1595)
[7] 蘇書玄,李彥龍,蔡志申(2004)。表面磁光科爾效應系統與Co/Ir (111)之磁性研究。東海科學第六卷。
[8] Navendu Mondal, Apurba De, Anunay Samanta(2019). Achieving Near-Unity Photoluminescence Efficiency for Blue-Violet-Emitting Perovskite Nanocrystals. ACS Energy Lett. 2019, 4, 32−39.
[9] Min-Gi Jeon, Seokjin Yun, Artavazd Kirakosyan, Moon Ryul Sihn, Soon-Gil Yoon, and Jihoon Choi. Scale-Up Synthesis of Organometal Halide Perovskite Nanocrystals (MAPbX3, X=Cl, Br, and I). ACS Sustainable Chem. Eng. 2019, 7, 19369−19374
[10] 林中冠,賴敏良,李君婷(2018)。新世代鈣鈦礦材料:合成、光電特性及應用。物理雙月刊
(https://pb.ps-taiwan.org/catalog/ins.php?index_m1_id=5&index_id=351)
[11] 謝嘉民、賴一凡、林永昌、枋志堯。光激發螢光量測的原理、架構及應用。科儀新知第二十六卷第六期 94.6。
[12] 羅聖全(2013)。科學基礎研究之重要利器¬-掃描式電子顯微鏡(SEM)。科學研習 2013年5月 NO.52-5
[13] Himchan Cho, Joo Sung Kim, Young-Hoon Kim, Tae-Woo Lee. Influence of A-site cation on the thermal stability of metal halide perovskite polycrystalline films. Journal of Information Display, 19:1, 53-60
[14] 葉時賢。有機鈣鈦礦/鐵鈀合金-異質雙層薄膜系統之熱穩定性、光學及磁性分析。國立台灣師範大學物理學系2020,未出版,台北市
[15] Jingying Wang, Xin Pan, Chuang Zhang, Hangwen Guo, Zeev Valy Vardeny. Light-controlled spintronic devic based on hybrid organic-inorganic perovskites. J. Photon. Energy 8(3), 032207 (2018), doi: 10.1117/1.JPE.8.032207.
[16] Jae Choul Yu, Da Bin Kim, Eui Dae Jung , Bo Ram Lee and Myoung Hoon Song. High-performance perovskite light-emitting diodes via morphological control of perovskite films. DOI: 10.1039/C5NR05604G (Paper) Nanoscale, 2016, 8, 7036-7042
[17] Xi Yuan, Xuemin Hou, Ji Li, Chaoqun Qu, Wenjin Zhang, Jialong Zhao and Haibo Li. Thermal degradation of luminescence in inorganic perovskite CsPbBr3 nanocrystals. Phys. Chem. Chem. Phys., 2017, 19, 8934—8940
[18] F. Palazon, F. Di Stasio, S. Lauciello, R. Krahne, M. Prato and L. Manna. Evolution of CsPbBr3 nanocrystals upon postsynthesis annealing under an inert atmosphere. J. Mater. Chem. C, 2016, 4, 9179—9182
[19] Yu Wang, Yue Yang, Peng Wang, Xue Bai. Concentration- and temperature-dependent photoluminescence of CsPbBr3 Perovskite quantum dots. Optik 139 (2017) 56–60
[20] Francisco Palazon, Sedat Dogan, Sergio Marras, Federico Locardi, Ilaria Nelli, Prachi Rastogi,Maurizio Ferretti, Mirko Prato, Roman Krahne, and Liberato Manna. From CsPbBr3 Nano-Inks to Sintered CsPbBr3−CsPb2Br5 Films via Thermal Annealing: Implications on Optoelectronic Properties. J. Phys. Chem. C 2017, 121, 11956−11961.
[21] Dursun I, De Bastiani M, Turedi B, Alamer B, Shkurenko A, et al. CsPb2Br5 Single Crystals: Synthesis and Characterization. ChemSusChem(2017). Available: http://dx.doi.org/10.1002/cssc.201701131.
[22] Shyr-Shyan, YehShi-Yu, Yu-Chiang Chao, Wen-Chin Lin, et al. Discrete interfacial effects of organic lead halide perovskite coating on magneticunderlayer: MAPbBr3/FePd heterostructure. Surfaces andInterfaces(2021), doi: https://doi.org/10.1016/j.surfin.2021.101133
[23] 第二章基本原理,http://rportal.lib.ntnu.edu.tw/bitstream/20.500.12235/102642/2/n069441030202.pdf