簡易檢索 / 詳目顯示

研究生: 鍾秉剛
Jhong, Bing-Gang
論文名稱: 設計與實現差動型輪型移動機器人之機器人控制系統
Design and Implementation of Robotic Control System for Differential Wheeled Mobile Robot
指導教授: 陳美勇
Chen, Mei-Yung
口試委員: 蘇順豐
Su, Shun-Feng
莊季高
Juang, Jih-Gau
郭重顯
Kuo, Chung-Hsien
楊谷洋
Young, Kuu-Young
蔣欣翰
Chiang, Hsin-Han
陳美勇
Chen, Mei-Yung
口試日期: 2023/11/17
學位類別: 博士
Doctor
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 110
中文關鍵詞: 機器人控制系統路徑規劃蒙地卡羅定位適應性控制
英文關鍵詞: robotic control system, path planning, Monte Carlo localization, adaptive control
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400005
論文種類: 學術論文
相關次數: 點閱:114下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文改良機器人控制系統中的演算法,主題涵蓋機器人的運動規劃、定位與控制器設計,藉此提升控制系統的運作效率。在運動規劃領域,我們探討或提出對雙向快速探索隨機樹(BRRT)演算法、A*演算法與hybrid A*演算法的改進措施,並且設計剪枝與平滑算法優化路徑品質,最後搭配梯形速度規劃完成運動規劃工作。在定位方面,在使用特徵地圖的場合採用拓展卡曼濾波器,而在網狀地圖使用改良式蒙地卡羅定位法。此改良式蒙地卡羅定位法由本論文提出,藉由重新設計演算法的權重分配與重新採樣的架構提升演算法的搜尋效率。而在控制器設計方面,我們提出了一種自適應控制器,旨在最小化機器人的預定狀態和當前狀態之間的追蹤誤差。透過我們的機器人控制系統,機器人可以順利地從目前位置導航到指定目標。該系統的性能透過模擬和實驗結果的結合得到證實。

    This dissertation enhances the robot control system algorithm, addressing motion planning, localization, and controller design to improve overall system efficiency. In motion planning, we propose improvements to the Bidirectional Rapid Exploration Random Tree (BRRT), A*, and hybrid A* algorithms. We design pruning and smoothing algorithms to optimize path quality and implement a trapezoidal velocity profile to finalize motion planning. For localization, we utilize the extended Kalman filter (EKF) with feature maps and introduce an improved Monte Carlo localization (IMCL) method for grid maps. This novel Monte Carlo localization method, introduced in this dissertation, enhances algorithm search efficiency by redesigning weight distribution and resampling structures. In controller design, we introduce an adaptive controller to minimize tracking errors between the predetermined and current states of the robot. Our robot control system enables seamless navigation from the current location to the designated target. The performance is validated through a combination of simulation and experimental results.

    Chapter 1. Introduction 1 1.1 Literature review 3 1.1.1 Planning 3 1.1.2 Localization 11 1.1.3 Controller design 12 1.2 Scope and aims 14 1.3 Contributions 14 1.4 Structure of the dissertation 15 Chapter 2. The definition of the environment and the robot 16 Chapter 3. Path and motion planning 20 3.1 RRT (Rapidly-Exploring Random Tree) algorithm 21 3.2 A* algorithm 24 3.3 Path optimization algorithm 27 3.4 The hybrid A* algorithm 29 3.4.1 Heuristics 31 3.4.2 Path optimization for the hybrid A* algorithm 36 3.5 Motion planning based on trapezoidal velocity profile 41 3.6 Obstacle avoidance 43 Chapter 4. Localization 45 4.1 Extended Kalman filter localization 46 4.2 Improved Monte Carlo localization 49 4.2.1 Initialization 50 4.2.2 Prediction 52 4.2.3 Weight assignment 52 4.2.4 Resampling 54 Chapter 5. Controller design 58 5.1 The definition of tracking error 59 5.2 Controller design based on the kinematic model 61 5.3 Controller design based on the dynamic model 63 5.4 The dynamic gain adjustment using fuzzy rule control 64 Chapter 6. Simulation and experimental results 68 6.1 Path and motion planning 69 6.2 Localization 80 6.2.1 Extended Kalman filter localization 80 6.2.2 Improved Monte Carlo localization 88 6.2.2.1 Localizing the robot in both static and dynamic states 88 6.2.2.2 Localizing the robot during kidnapping scenarios 91 6.3 Controller Design 94 6.4 The integration results 96 Chapter 7. Conclusion and future outlook 100 Statement and reference 102

    “Global Autonomous Mobile Robots (AMR) Market Forecast 2022-2030,” Inkwood Research, July 4, 2022. Accessed: Dec. 9, 2022. [Online]. Available: https://inkwoodresearch.com/reports/autonomous-mobile-robots-market/
    “AMRA-271:2022,” AMRA, Nov. 22, 2022. Accessed: Dec. 9, 2022. [Online]. Available: https://www.amr-alliance.org/amra-271/
    J. Zhang, R. Liu, K. Yin, Z. Wang, M. Gui and S. Chen, “Intelligent Collaborative Localization Among Air-Ground Robots for Industrial Environment Perception,” in IEEE Transactions on Industrial Electronics, vol. 66, no. 12, pp. 9673-9681, Dec. 2019, doi: 10.1109/TIE.2018.2880727.
    P. Chanak, I. Banerjee, J. Wang and R. S. Sherratt, “Obstacle avoidance routing scheme through optimal sink movement for home monitoring and mobile robotic consumer devices,” in IEEE Transactions on Consumer Electronics, vol. 60, no. 4, pp. 596-604, Nov. 2014, doi: 10.1109/TCE.2014.7027292.
    J. He, Y. Sun, L. Yang, J. Sun, Y. Xing and F. Gao, “Design and Control of TAWL—A Wheel-Legged Rover With Terrain-Adaptive Wheel Speed Allocation Capability,” in IEEE/ASME Transactions on Mechatronics, vol. 27, no. 4, pp. 2212–2223, Aug. 2022, doi: 10.1109/TMECH.2022.3176638.
    C. Cadena et al., “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” in IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1309-1332, Dec. 2016, doi: 10.1109/TRO.2016.2624754.
    J. Wolf, W. Burgard and H. Burkhardt, “Robust vision-based localization by combining an image-retrieval system with Monte Carlo localization,” in IEEE Transactions on Robotics, vol. 21, no. 2, pp. 208-216, April 2005, doi: 10.1109/TRO.2004.835453.
    P. E. Hart, N. J. Nilsson and B. Raphael, “A Formal Basis for the Heuristic Determination of Minimum Cost Paths,” in IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, July 1968, doi: 10.1109/TSSC.1968.300136.
    R. Xiong, L. Li, C. Zhang, K. Ma, X. Yi and H. Zeng, “Path Tracking of a Four-Wheel Independently Driven Skid Steer Robotic Vehicle Through a Cascaded NTSM-PID Control Method,” in IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-11, 2022, Art no. 7502311, doi: 10.1109/TIM.2022.3160549.
    D. Li, W. Yin, W. E. Wong, M. Jian and M. Chau, “Quality-Oriented Hybrid Path Planning Based on A* and Q-Learning for Unmanned Aerial Vehicle,” in IEEE Access, vol. 10, pp. 7664-7674, 2022, doi: 10.1109/ACCESS.2021.3139534.
    G. Tang, C. Tang, C. Claramunt, X. Hu and P. Zhou, “Geometric A-Star Algorithm: An Improved A-Star Algorithm for AGV Path Planning in a Port Environment,” in IEEE Access, vol. 9, pp. 59196–59210, 2021, doi: 10.1109/ACCESS.2021.3070054.
    W. Chi, Z. Ding, J. Wang, G. Chen and L. Sun, “A Generalized Voronoi Diagram-Based Efficient Heuristic Path Planning Method for RRTs in Mobile Robots,” in IEEE Transactions on Industrial Electronics, vol. 69, no. 5, pp. 4926-4937, May 2022, doi: 10.1109/TIE.2021.3078390.
    S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” in Int. J. Robot. Res., vol. 30, no. 7, pp. 846-894, 2011.
    L. Chen, Y. Shan, W. Tian, B. Li and D. Cao, “A Fast and Efficient Double-Tree RRT*-Like Sampling-Based Planner Applying on Mobile Robotic Systems,” in IEEE/ASME Transactions on Mechatronics, vol. 23, no. 6, pp. 2568-2578, Dec. 2018, doi: 10.1109/TMECH.2018.2821767.
    C. Moon and W. Chung, “Kinodynamic Planner Dual-Tree RRT (DT-RRT) for Two-Wheeled Mobile Robots Using the Rapidly Exploring Random Tree,” in IEEE Transactions on Industrial Electronics, vol. 62, no. 2, pp. 1080-1090, Feb. 2015, doi: 10.1109/TIE.2014.2345351.
    R. Mashayekhi, M. Y. I. Idris, M. H. Anisi and I. Ahmedy, “Hybrid RRT: A Semi-Dual-Tree RRT-Based Motion Planner,” in IEEE Access, vol. 8, pp. 18658-18668, 2020, doi: 10.1109/ACCESS.2020.2968471.
    Y. Li et al., “A Mobile Robot Path Planning Algorithm Based on Improved A* Algorithm and Dynamic Window Approach,” in IEEE Access, vol. 10, pp. 57736-57747, 2022, doi: 10.1109/ACCESS.2022.3179397.
    J. Qi, H. Yang and H. Sun, “MOD-RRT*: A Sampling-Based Algorithm for Robot Path Planning in Dynamic Environment,” in IEEE Transactions on Industrial Electronics, vol. 68, no. 8, pp. 7244-7251, Aug. 2021, doi: 10.1109/TIE.2020.2998740.
    Q. Yao et al., “Path Planning Method With Improved Artificial Potential Field—A Reinforcement Learning Perspective,” in IEEE Access, vol. 8, pp. 135513-135523, 2020, doi: 10.1109/ACCESS.2020.3011211.
    A. R. Willms and S. X. Yang, “An efficient dynamic system for real-time robot-path planning,” in IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 36, no. 4, pp. 755-766, Aug. 2006, doi: 10.1109/TSMCB.2005.862724.
    M. L. Puterman, “Markov decision processes,” in Handbooks in Operations Research and Management Science, vol. 2, 1990, pp. 331-434.
    N. S. Monteiro, V. M. Gonçalves and C. A. Maia, “Motion Planning of Mobile Robots in Indoor Topological Environments using Partially Observable Markov Decision Process,” in IEEE Latin America Transactions, vol. 19, no. 8, pp. 1315–1324, Aug. 2021, doi: 10.1109/TLA.2021.9475862.
    D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments,” in The International Journal of Robotics Research, vol. 29, no. 5, pp. 485-501, 2010, doi:10.1177/0278364909359210.
    L. E. Dubins, “On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents,” in American Journal of Mathematics, vol. 79, no. 3, 1957, pp. 497-516, doi: 10.2307/2372560.
    J. A. Reeds and L. A. Shepp. “Optimal paths for a car that goes both forwards and backwards,” in Pacific Journal of Mathematics, vol. 145, no. 3, 1990, pp. 367-393, doi: 10.2140/pjm.1990.145.367.
    W. Yao, N. Qi, C. Yue and N. Wan, “Curvature-Bounded Lengthening and Shortening for Restricted Vehicle Path Planning,” in IEEE Transactions on Automation Science and Engineering, vol. 17, no. 1, pp. 15-28, Jan. 2020, doi: 10.1109/TASE.2019.2916855.
    J. Wen, X. Zhang, H. Gao, J. Yuan and Y. Fang, “E3MoP: Efficient Motion Planning Based on Heuristic-Guided Motion Primitives Pruning and Path Optimization With Sparse-Banded Structure,” in IEEE Transactions on Automation Science and Engineering, vol. 19, no. 4, pp. 2762-2775, Oct. 2022, doi: 10.1109/TASE.2021.3128521.
    L. Xiong, J. Gao, Z. Fu and K. Xiao, “Path planning for automatic parking based on improved Hybrid A* algorithm,” 2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI), Tianjin, China, 2021, pp. 1-5, doi: 10.1109/CVCI54083.2021.9661197.
    C. Li, D. Yu, W. Lu and M. Li, “Variable-curvature hybrid A-star search for AMR path planning in limited space,” 2021 3rd International Symposium on Robotics & Intelligent Manufacturing Technology (ISRIMT), Changzhou, China, 2021, pp. 61-65, doi: 10.1109/ISRIMT53730.2021.9597157.
    M. Denniel and T. D. Son, “Autonomous valet parking path planning using Hybrid A*,” 2019 38th Benelux Meeting on Systems and Control, Lommel, Belgium, 2019.
    W. Sheng, B. Li and X. Zhong, “Autonomous Parking Trajectory Planning With Tiny Passages: A Combination of Multistage Hybrid A-Star Algorithm and Numerical Optimal Control,” in IEEE Access, vol. 9, pp. 102801-102810, 2021, doi: 10.1109/ACCESS.2021.3098676.
    S. Sedighi, D. -V. Nguyen and K. -D. Kuhnert, “Guided Hybrid A-star Path Planning Algorithm for Valet Parking Applications,” 2019 5th International Conference on Control, Automation and Robotics (ICCAR), Beijing, China, 2019, pp. 570-575, doi: 10.1109/ICCAR.2019.8813752.
    J. Petereit, T. Emter, C. W. Frey, T. Kopfstedt and A. Beutel, “Application of Hybrid A* to an Autonomous Mobile Robot for Path Planning in Unstructured Outdoor Environments,” ROBOTIK 2012; 7th German Conference on Robotics, Munich, Germany, 2012, pp. 1-6.
    C. V. Dang, H. Ahn, D. S. Lee, and S. C. Lee, “Improved Analytic Expansions in Hybrid A-Star Path Planning for Non-Holonomic Robots,” in Applied Sciences, vol. 12, no. 12, pp. 5999, Jun. 2022, doi: 10.3390/app12125999.
    M. -A. Chung and C. -W. Lin, “An Improved Localization of Mobile Robotic System Based on AMCL Algorithm,” in IEEE Sensors Journal, vol. 22, no. 1, pp. 900-908, 1 Jan.1, 2022, doi: 10.1109/JSEN.2021.3126605.
    X. Kang, K. Li and W. Zhu, “A new localization method for mobile robots using Genetic Simulated Annealing Monte Carlo Localization,” 2011 IEEE International Conference on Mechatronics and Automation, Beijing, China, 2011, pp. 1780-1785, doi: 10.1109/ICMA.2011.5986249.
    C. -C. Hsu, C. -J. Kuo and W. -C. Kao, “Improved Monte Carlo Localization with Robust Orientation Estimation for Mobile Robots,” 2013 IEEE International Conference on Systems, Man, and Cybernetics, Manchester, UK, 2013, pp. 3651-3656, doi: 10.1109/SMC.2013.622.
    D. -H. Kim and J. -H. Oh, “Tracking control of a two-wheeled mobile robot using input–output linearization,” in Control Engineering Practice, vol. 7, no.3, pp. 369-373, Mar. 1999, doi: 10.1016/S0967-0661(98)00184-1.
    C. Samson, “Time-varying Feedback Stabilization of Car-like Wheeled Mobile Robots,” in The International Journal of Robotics Research, vol. 12, no. 1, pp. 55-64, Feb. 1993, doi: 10.1177/027836499301200104.
    M. Defoort and T. Murakami, “Sliding-Mode Control Scheme for an Intelligent Bicycle,” in IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3357-3368, Sept. 2009, doi: 10.1109/TIE.2009.2017096.
    S. -C. Lin, C. -C. Tsai and W. -L. Luo, “Adaptive Neural Network Control of a Self-balancing Two-wheeled Scooter,” IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 2007, pp. 868-873, doi: 10.1109/IECON.2007.4460153.
    S. X. Yang, A. Zhu, G. Yuan and M. Q. . -H. Meng, “A Bioinspired Neurodynamics-Based Approach to Tracking Control of Mobile Robots,” in IEEE Transactions on Industrial Electronics, vol. 59, no. 8, pp. 3211-3220, Aug. 2012, doi: 10.1109/TIE.2011.2130491.
    S. Blažič, “On Periodic Control Laws for Mobile Robots,” in IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3660-3670, July 2014, doi: 10.1109/TIE.2013.2287222.
    Z. Jiang, and H. Nijmeijer, “Tracking Control of Mobile Robots: A Case Study in Backstepping,” in Automatica, vol. 33, no. 7, pp. 1393-1399, July 1997, doi: 10.1016/S0005-1098(97)00055-1.
    X. Chen, Y. Jia and F. Matsuno, “Tracking Control for Differential-Drive Mobile Robots With Diamond-Shaped Input Constraints,” in IEEE Transactions on Control Systems Technology, vol. 22, no. 5, pp. 1999-2006, Sept. 2014, doi: 10.1109/TCST.2013.2296900.
    B. S. Park, S. J. Yoo, J. B. Park and Y. H. Choi, “A Simple Adaptive Control Approach for Trajectory Tracking of Electrically Driven Nonholonomic Mobile Robots,” in IEEE Transactions on Control Systems Technology, vol. 18, no. 5, pp. 1199-1206, Sept. 2010, doi: 10.1109/TCST.2009.2034639.
    C. -L. Hwang, “Comparison of Path Tracking Control of a Car-Like Mobile Robot With and Without Motor Dynamics,” in IEEE/ASME Transactions on Mechatronics, vol. 21, no. 4, pp. 1801-1811, Aug. 2016, doi: 10.1109/TMECH.2016.2553050.
    K. D. Do, Z. P. Jiang and J. Pan, “Simultaneous tracking and stabilization of mobile robots: an adaptive approach,” in IEEE Transactions on Automatic Control, vol. 49, no. 7, pp. 1147-1151, July 2004, doi: 10.1109/TAC.2004.831139.
    S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees: Progress and prospects,” in Algorithmic and computational robotics: new directions, vol. 5, pp. 293-308, Jul. 2001, doi: 10.1201/9781439864135.
    A. H. Qureshi and Y. Ayaz, “Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments,” in Robotics and Autonomous Systems, vol. 68, pp. 1-11, 2015, doi: 10.1016/j.robot.2015.02.007
    P. E. Hart, N. J. Nilsson and B. Raphael, “A Formal Basis for the Heuristic Determination of Minimum Cost Paths,” in IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, July 1968, doi: 10.1109/TSSC.1968.300136.
    R. E. Kalman, “A new approach to linear filtering and prediction problems,” in Transactions of the ASME–Journal of Basic Engineering, vol. 82, no. Series D, pp. 35-45, 1960, doi: 10.1115/1.3662552.
    B. Jhong and M. Chen, “An Enhanced Navigation Algorithm with an Adaptive Controller for Wheeled Mobile Robot Based on Bidirectional RRT,” in Actuators, vol. 11, no. 10, pp. 303, 2022, doi: 10.3390/act11100303.
    Y. Chen, B. Jhong and M. Chen, “A Real-Time Path Planning Algorithm Based on the Markov Decision Process in a Dynamic Environment for Wheeled Mobile Robots,” in Actuators, vol. 14, no. 4, pp. 166, 2022, doi: 10.3390/act12040166.
    B. Jhong and M. Chen, “Vector model-based robot-assisted control system for a wheeled mobile robot,” in Journal of the Chinese Institute of Engineers, vol. 46, no. 5, pp. 464-478, 2023, doi: 10.1080/02533839.2023.2204892.

    無法下載圖示 電子全文延後公開
    2026/12/08
    QR CODE