研究生: |
周峻忠 |
---|---|
論文名稱: |
不同騎乘姿勢對原地腳踏車運動之生理反應的影響 The Effects of Different Upper Body Positions on Physiological Responses During Incremental Test on Cycle Ergometer |
指導教授: | 林正常 |
學位類別: |
碩士 Master |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 騎乘姿勢 、生理反應 、原地腳踏車 |
英文關鍵詞: | body position, physiological response, cycle ergometer |
論文種類: | 學術論文 |
相關次數: | 點閱:420 下載:35 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:比較在原地腳踏車測功儀上進行漸增式負荷運動測驗時,採用直立姿勢 (upright position; UP)、彎把姿勢 (drop position, DP)與俯握姿勢(aero position; AP)所測得生理反應是否有所差異。方法:實驗對象為12名健康男性(年齡23.30 ± 0.97歲;身高175.62 ± 6.66公分;體重72.63 ± 7.32公斤),以平衡次序法,在原地腳踏車測功儀上,分別以直立姿勢、彎把姿勢與俯握姿勢各進行一次漸增運動測驗(每次測驗時間至少間隔48小時),分別觀察在150 W、200 W與衰竭時的生理反應。結果:攝氧量在150 W時,俯握姿勢大於直立姿勢,衰竭時直立姿勢大於彎把姿勢,彎把姿勢大於俯握姿勢;換氣量部分,直立姿勢大於俯握姿勢,彎把姿勢大於俯握姿勢;心跳率部分直立姿勢大於彎把姿勢,彎把姿勢大於俯握姿勢;呼吸頻率部分,俯握姿勢大於直立姿勢與彎把姿勢,運動時間方面,直立姿勢大於彎把姿勢與俯握姿勢,以上結果均達顯著水準 (p< .05),而血乳酸、自覺努力程度與均方根肌電訊號皆無顯著差異。結論:以不同之騎姿勢在原地腳踏車上進行漸增運動測驗時,其生理上的反應並不相同,隨騎乘姿勢與地面趨於水平,將限制生理功能之表現而影響運動表現。
Purpose:The aim of this study was to compare the physiological responses in upright position (UP), drop position (DP) and aero position (AP) during incremental test on cycle ergometer. Methods: Twelve health males (age 23.30 ± 0.97 yrs;height 175.62 ± 6.66 cm;weight 72.63 ± 7.32 kg) completed these three tests respectively by counter-balance design. During these tests, we assessd the physiological responses at 150W, 200W and exhaustion. Results: There were significant (p<.05) differences as follows: in part of oxygen uptake(VO2) at 150W workload, AP > UP, at exhaustion, UP > DP >AP; in part of ventilation(VE), UP > AP, DP > AP; in part of heart rate(HR) UP > DP > AP; in part of respiratory rate, AP > UP, AP > DP, in part of the time to exhaustion, UP > DP, UP > AP. There were no significant differences among these three types of test in the following indicators of blood lactate, ratio of perceived exertion(RPE) and root mean square EMG(rmsEMG). Conclusions: Different body positions affect physiological responses during incremental test on cycle ergometer. With the closer horizontal body position, the body functions would be more likely to be limited. This may abate exercise performance further.
Andrew, L., & Pruitt, Ed. D. (2001). Andy Pruitt’s Medical Guide for Cyclists. N.C. : RBR.
Ashe, M., Scroop, G., Frisken, P., Amery, C., & Wilkins, M. (2003). Body position affects performance in untrained cyclists. British Journal of Sports Medicine, 37, 441-444.
Atkinson, G., Davison, R., Jeukendrup, A., & Passfield, L. (2003). Science and cycling: current knowledge and future directions for research. Journal of Sports Science, 21, 767-787.
Berry, M., Pollack, W., & Nieuwenhuizen, K. (1994). A comparison between aero and standard racing handlebars during prolonged exercise. International Journal of Sports Medicine, 15, 16-20.
Borg, Gunnar (1998). Borg’s perceived exertion and pain scale. Champaign, IL: Human Kinetics.
Capelli, C., Rosa, G., Butti, F., & Ferretti, G. (1993). Energy cost and efficiency of riding aerodynamic bicycles. European Journal of Applied Physiology, 67, 144-149
Faria, I. E., Dix, C., & Frazer, C. (1978). Effect of body position during cycling on heart rate, pulmonary ventilation, oxygen uptake and work output. Journal of Sports Medicine, 18, 49-56.
Finsterer, J.(2001). EMG-interference pattern analysis. Journal of Electromyography and Kinesiology, 11, 231-246.
Gerstenblith, G., Renlund, D., & Lakatta, E. (1987). Cardiovascular response to exercise in younger and older men. Federation Proceedings, 46, 1834-1839.
Glendhill, N., Cox, D., & Jamnik, R. (1994). Endurance athletes’ stroke volume does not plateau: Major advantage is diastolic function. Medicine and Science in Sports and Exercise, 26, 1116-1121.
Giakas, G. (2004). Power spectrum analysis and filtering. In N. Stergiou (Ed). Innovative analyses of human movement (pp. 223-256). Champaign, IL: Human Kinetics.
Gnehm, P., Reichenbach, S., & Alpeter, E. (1997). Influence of different racing position on metabolic cost of elite cyclists. Medicine and Science in Sports and Exercise, 29, 818-823.
Grappe, F., Candau, R., & Busso, T. (1998). Effect of cycling position on ventilatory and metabolic variables. International Journal of Sports Medicine, 19, 336-341.
Hagberg, J., & McCole, S. (1990). The effect of drafting and aerodynamic equipment on energy expenditure during cycling. Cycling Science, 2(3), 19-22.
Heil, D. P., Wilcox, A., & Quinn, C. (1995). Cardiorespiratory responses to seat tube variation during steady state cycling. Medicine and Science in Sports and Exercise, 27, 730-735.
Johnson, S., & Shultz, B. (1990) The physiologic effects of aerodynamic handlebars. Cycling Science, 2(4), 9-12.
Kyle, C. R., (1989). The aerodynamics of helmets and handlebars. Cycling Science, 1(4), 22-25.
Mcardle, W. D., Katch, F. I., & Katch, V. L. (2003). Exercise physiology: Energy, nutrition, and human performance. (4th Ed.) Lippincott, Williams & Wilkins.
McMiken, D. & Daniels, J. (1976). Aerobic requirements of maximal aerobic power in treadmill and trunk running. Medicine and Science in Sports and Exercise, 8, 14-17.
Origenes, M., Blank, S., & Schoene, R. (1993). Exercise ventilatory response to upright and aero-posture cycling. Medicine and Science in Sports and Exercise, 25, 608-612.
Peveler, W., Bishop, P., Smith, J., & Richardson, M. (2005). Effect of training in an aero position on metabolic economy. Journal of Exercise Physiology online, 8(1), 44-50.
Perry, S. R., Housh, T. J., Johnson, G. O., Ebersole, K. T., Bull, A. J., Evetovich T. K., & Smith, D. B. (2001). Mechanomyography, electromyography, heart rate, and ratings of perceived exertion during incremental cycle ergometry. Journal of Sports Medicine and Physical Fitness, 41, 183-188.
Powers, S. K., & Howley, E. T. (2001). Exercise physiology: Theory and application and performance (4th Ed.). N.Y.: McGraw-Hill Higher Education.
Prampero, P. E. (1986). The energy cost of human locomotion on land and in water. International Journal of Sports Medicine, 7, 55-72.
Pugh, L. (1973). The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. Journal of Physiology, 213, 255-276.
Riechman, S. E., Zoeller, R. F., Balasekaran, G., Goss, F. L., & Robertson, R. J. (2002). Prediction of 2000 m indoor rowing performance using a 30 s sprint and maximal oxygen uptake. Journal of Sports Sciences, 20 (9), 681-687.
Sheel, A., Lamal, I., & Potvin, P. (1996). Comparison of aero-bars versus traditional cycling posture on physiological parameters during submaximal cycling. Journal of Applied Physiology, 2, 16-21.
Spyer, K. (1994). Central nervous mechanisms contributing to cardiovascular control. Journal of Physiology, 471, 1-19.
Stamenovic, D. (1990). Micromechanical foundations of pulmonary elasticity. Physiological Reviews, 70, 1117-1134.
Szal, S. E., & Schoene, R. B. (1989). Ventilatory response to rowing cycling in elite oarswomen. Journal of Applied Physiology, 67, 264-269.
Whipp, B. J. (1994). The slow component of O2 uptake kinetics during heavy exercise. Medicine and Science in Sports and Exercise, 26(11), 1319-1326.
Yoshitake, Y., Miyazaki, M., & Moritai, T. (2001). Assessment of lower - back muscle fatigue using electromyography, mechanomyography, and near – infrared spectroscopy. European Journal of Applied Physiology. 84(3), 174 - 179.
Zoladz, J. A., Rademaker, A., & Sargeant, A. J. (1995). Non-linear relationship between O2 uptake and power output at high intensities of exercise in humans. The Journal of Physiology, 488(1), 211-217.