研究生: |
謝逢軍 Hsieh, Feng-Chun |
---|---|
論文名稱: |
石膽酸二聚體對於唾液酸轉移酶及癌細胞轉移之影響 Lithocholic Acid Dimer Applied for Human Sialyltransferase Inhibitor |
指導教授: |
李文山
Li, Wen-Shan 林文偉 Lin, Wen-Wei |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 115 |
中文關鍵詞: | 唾液酸 、唾液酸轉移酶抑制劑 、癌症轉移 、石膽酸 |
英文關鍵詞: | Sialic acid, Sialyltransferase inhibitor, Tumor metastasis, Lithocholic acid |
DOI URL: | http://doi.org/10.6345/NTNU202000834 |
論文種類: | 學術論文 |
相關次數: | 點閱:211 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文合成了具有不同的鏈及取代基的石膽酸二聚體類似物AK10165、AK10169、AK10172、AK10173、AK10181、AK10183、AK10184、AK10192、AK10194、AK10195、AK10196和AK10199,並且評估其細胞毒性、抑制唾液酸轉移酶能力,以及癌細胞轉移能力。綜上所述,石膽酸二聚體類似物幾乎沒有細胞毒性並顯示出對MDA-MB-231乳癌細胞的輕度抗轉移能力,其IC50為40 μM至80 μM。在這些石膽酸二聚體中,AK10165對ST6Gal I表現出最佳的抑制活性其IC50為18 μM。一系列的石膽酸二聚體也證明了輕微的唾液酸轉移酶抑制選擇性。更多的石膽酸二聚體臨床應用之近一步研究正在進行中。
In this work, the LCA dimer analogues AK10165, AK10169, AK10172, AK10173, AK10181, AK10183, AK10184, AK10192, AK10194, AK10195, AK10196 and AK10199 with different conjugate linkers and substituents were synthesized and evaluated their cytotox-icity, sialyltransferase isozyme inhibition, and anti-migration properties. To sum up, there is little cytotoxicity found in lithocholic acid dimer analogues, and mild anti-migratory capability were showed against MDA-MB-231 tumor cells, with IC50 ranging from 40 μM to 80 μM. Among these LCA dimers, AK10165 displayed the best inhibitory activity toward ST6Gal I with as IC50 value of 18 μM. A slight sialyltransferase isozyme selectivity is also demonstrated in their series of LCA dimers. Further study to pursue clinical application of LCA dimers is in progress.
1. 衛生福利部統計處, (2019), 107年死因統計結果分析, Retrieved May, 05, 2020, from https://dep.mohw.gov.tw/DOS/lp-4472-113.html.
2. 衛生福利部統計處, (2018), 106年死因統計結果分析, Retrieved May, 05, 2020, from https://dep.mohw.gov.tw/DOS/cp-3960-41756-113.html.
3. 衛生福利部統計處, (2017), 105年死因統計結果分析, Retrieved May, 05, 2020, from https://dep.mohw.gov.tw/DOS/lp-3352-113.html.
4. 衛生福利部統計處, (2016), 民國104年死因統計年報, Retrieved May, 05, 2020, from https://dep.mohw.gov.tw/DOS/lp-1777-113.html.
5. Steeg, P. S. Targeting metastasis, Nat. Rev. Cancer 2016, 16, 201 – 218.
6. Newhauser, W. D.; Gonzalez, A. B.; Schulte, R.; Lee, C.; A review of radiotherapy-induced late effects research after advanced technology treatment, Front. Oncol. 2016. 6, 1 – 11.
7. Bull, C.; Stoel, M. A.; den Brok, M. H.; Adema, G. J. Sialic acids sweeten a tumor's life, Cancer Res. 2014, 74, 3199 – 3204.
8. Rodrigues, J. G.; Balmana, M.; Macedo, J. A.; Pocas, J.; Fernandes, A.; de-Freitas-Junior, J. C. M.; Pinho, S. S.; Gomes, J.; Magalhaes, A.; Gomes, C.; Mereiter, S.; Reis, C. A. Glycosylation in cancer: Selected roles in tumour progression, immune modulation and metastasis, Cell. Immunol 2018, 333, 46 – 57.
9. Vajaria, B. N.; Patel, P. S. Glycosylation: A hallmark of cancer, Glycoconj. J. 2017, 34, 147 – 156.
10. Lu, J.; Gu, J. Significance of beta-galactoside alpha2,6 sialyltranferase 1 in cancers, Mol-ecules 2015, 20, 7509 – 7527.
11. Wang, X.; Zhang, L. H.; Ye, X. S. Recent development in the design of sialyltransferase inhibitors, Med. Res. Rev. 2003, 23, 32 – 47.
12. Szabo, R.; Skropeta, D. Advancement of sialyltransferase inhibitors: Therapeutic challenges and opportunities, Med. Res. Rev. 2017, 37, 219 – 270.
13.Wang, L.; Liu, Y.; Wu, L.; Sun, X. L. Sialyltransferase inhibition and recent advances, Biochim. Biophys. Acta. 2016, 1864, 143 – 153.
14. Jacobs, C. L.; Goon, S.; Yarema, K. J.; Hinderlich, S.; Hang, H. C.; Chai, D. H.; Bertozzi, C. R.; Substrate specificity of the sialic acid biosynthetic pathway, Biochemistry 2001, 40, 12864 – 12874.
15. Szabo, R.; Skropeta, D. Advancement of sialyltransferase inhibitors: Therapeutic challenges and opportunities, Med. Res. Rev. 2017, 37, 219 – 270.
16. Pinho, S. S.; Reis, C. A. Glycosylation in cancer: Mechanisms and clinical implications, Nat. Rev. Cancer 2015, 15, 540 – 555.
17. Gomez-Cuadrado, L.; Tracey, N.; Ma, R.; Qian, B.; Brunton, V. G. Mouse models of metastasis: Progress and prospects, Dis. Model. Mech. 2017, 10, 1061 – 1074.
18. Macauley, M. S.; Arlian, B. M.; Rillahan, C. D.; Pang, P. C.; Bortell, N.; Marcondes, M. C.; Haslam, S. M.; Dell, A.; Paulson, J. C. Systemic blockade of sialylation in mice with a global inhibitor of sialyltransferases, J. Biol. Chem. 2014, 289, 35149 – 35158.
19. Bull, C.; Heise, T.; Adema, G. J.; Boltje, T. J. Sialic acid mimetics to target the sialic acid-siglec axis, Trends Biochem. Sci. 2016, 41, 519 – 531.
20. Bull, C.; Boltje, T. J.; van Dinther, E. A.; Peters, T.; de Graaf, A. M.; Leusen, J. H.; Kreutz, M.; Figdor, C. G.; den Brok, M. H.; Adema, G. J. Targeted delivery of a sialic ac-id-blocking glycomimetic to cancer cells inhibits metastatic spread, ACS Nano. 2015, 9, 733 – 745.
21. Rillahan, C. D.; Antonopoulos, A.; Lefort, C. T.; Sonon, R.; Azadi, P.; Ley, K.; Dell, A.; Haslam, S. M.; Paulson, J. C. Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome, Nat. Chem. Biol. 2012, 8, 661 – 668.
22. Guo, J.; Li, W.; Xue, W.; Ye, X. S. Transition state-based sialyltransferase inhibitors: Mimicking oxocarbenium ion by simple amide, J. Med. Chem. 2017, 60, 2135 – 2141.
23.Li, W.; Niu, Y.; Xiong, D. C.; Cao, X.; Ye, X. S. Highly substituted cyclopentane-CMP conjugates as potent sialyltransferase inhibitors, J. Med. Chem. 2015, 58, 7972 – 7990.
24. Kajihara, Y.; Kodama H.; Wakabayashi, T.; Wakabayashi T.; Sato, K.; Sato K.; Hashimoto, H.; Hashimoto, H. Characterization of inhibitory activities and binding mode of synthetic 6'-modified methyl N-acetyl-beta-lactosaminide toward rat liver CMP-D-Neu5Ac: D-galactoside-(2-6)-alpha-d-sialyltransferase, Carbohydr Res. 1993, 247, 179 – 193.
25. Lin, T. W.; Chang, W. W.; Chen, C. C.; Tsai, Y. C. Stachybotrydial, a potent inhibitor of fucosyltransferase and sialyltransferase, Biochem. Biophys. Res. Commun. 2005, 331, 953 – 957.
26. Müller, B, Schaub, C., Schmidt, R. R., Efficient sialyltransferase inhibitors based on transition-state analogues of the sialyl donor, Angew. Chem. Int. Ed. 1998, 37, 2893 – 2897.
27. Huang, W.; Sun, L.; Wang, B.; Ma, Y.; Yao, D.; Han, W.; Wang, L.; Ginsenosides, potent inhibitors of sialyltransferase. Z Naturforsch. 2020. 75, 41 – 49.
30. Wu, C. Y.; Hsu, C. C.; Chen, S. T.; Tsai, Y. C. Soyasaponin I, a potent and specific sialyltransferase inhibitor, Biochem. Biophys. Res. Commun. 2001, 284, 466 – 469.
31. Chang, K. H.; Lee, L.; Chen, J.; Li, W. S. Lithocholic acid analogues, new and potent alpha-2,3-sialyltransferase inhibitors, Chem. Commun. (Camb.) 2006, 14, 629 – 631.
32. Hsu, C. C.; Lin, T. W.; Chang, W. W.; Wu, C. Y.; Lo, W. H.; Wang, P. H.; Tsai, Y. C. Soyasaponin-I-modified invasive behavior of cancer by changing cell surface sialic acids, Gynecol. Oncol. 2005, 96, 415 – 422.
33. Chen, J. Y.; Tang, Y. A.; Huang, S. M.; Juan, H. F.; Wu, L. W.; Sun, Y. C.; Wang, S. C.; Wu, K. W.; Balraj, G.; Chang, T. T.; Li, W. S.; Cheng, H. C.; Wang, Y. C. A novel sialyl-transferase inhibitor suppresses FAK/paxillin signaling and cancer angiogenesis and metastasis pathways, Cancer. Res. 2011, 71, 473 – 483.
34. Chiang, C. H.; Wang, C. H.; Chang, H. C.; Shivaji V.; Li W. S.; Hung, W. C.; A novel sialyltransferase inhibitor AL10 suppresses invasion and metastasis of lung cancer cells by inhibiting integrin-mediated signaling, J Cell Physiol. 2010, 223, 492 – 499.
35. 傅志偉, 由自然界靈感設計及合成出抗癌症和抗癌症轉移試劑:細胞和動物體內之活性測試評估, 國立中央大學化學學系博士論文, 2015.
36. 徐子凡, 探討雙高石膽酸衍生物對於唾液酸轉移酶及癌細胞轉移的影響,國立台灣師範大學化學系碩士論文,2018.
37. 廖芝琹, 探討高石膽酸衍生物對於唾液酸轉移酶及癌細胞轉移的影響,國立中正大學化學曁生物化學研究所碩士論文,2018.
38. Abdu-Allah; H. H. M.; Chang, T. T.; Li, W. S. Synthesis of B- and C-ring-modified lithocholic acid analogues as potential sialyltransferase inhibitors. Steroids 2016, 112. 54–61.
39. Aysola, K.; Desai, A.; Welch, C.; Xu, J.; Qin, Y.; Reddy, V.; Matthews, R.; Owens, C.; Okoli, J.; Beech, D. J.; Piyathilake, C. J.; Reddy, S. P.; Rao, V. N. Triple negative breast cancer - an overview, Hereditary Gene, 2013. 2, 1 – 7.
40. Tamminen, J.; Kolehmainen, E.; Linnanto, J.; Salo,H.; Manttari, P.; 3α,3’ α-Bis(n-acetoxyphenylcarboxy)-5b-cholan-24-oic acid ethane-1,2-diol diesters (n = 2–4): 13C NMR chemical shifts, variable-temperature and NOE 1H NMR measurements and MO calculations of novel bile acid-based dimers, Magn. Reson. Chem. 2000, 38, 877 – 882.
41. Dang, Z.; Jung, K.; Qian, K.; Lee, K. H.; Huang, L.; Chen, C. H.; Synthesis of lithocholic acid derivatives as proteasome regulators, Med. Chem. Lett. 2012, 3, 925 − 930.
42. Pommier,Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer 2006, 6, 789 – 802.
43. Wall, M. E.; Wani, M. C.; Camptothecin and taxol: from discovery to clinic. J. Ethnopharmacol 1996, 51, 239 – 254.
44. Szewczyk, S. M.; Zhao, Y.; Sakai, H. A.; Dube P.; Newhouse, T. R.; α, β-dehydrogenation of ester with free O-H and N-H functionalities via allyl-palladium catalysis, Tedrohedron 2018, 74, 3293 – 3300.
45. Joe, C. L.; Doyle, A. G.; Direct acylation of C(sp3) ¢ H bonds enabled by nickel and photoredox catalysis, Angew. Chem. Int. Ed. 2016, 55, 4040 – 4043.
46. Hashimoto, M.; Liu, Y.; Fang, K.; Li, H. Y.; Campiani, G.; Nakanishi, K.; Preparation and biological properties of biotinylated PhTX derivatives, Bioorg. Med. Chem. 1999, 7, 1181 – 1194.