研究生: |
王韋評 Wang, Wei-Ping |
---|---|
論文名稱: |
紅外線塗料影響冰箱性能之研究 Effect of Infrared Water-Based Coating for Refrigerator Performance |
指導教授: |
鄧敦平
Teng, Tun-Ping |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 24小時加載循環實驗 、耗電量 、能源因數 、水性紅外線塗料 、無載下拉性能實驗 |
英文關鍵詞: | 24 hr on-load cycling test, power consumption, energy factor, infrared water-based coating, no-load pull-down test |
DOI URL: | https://doi.org/10.6345/NTNU202204830 |
論文種類: | 學術論文 |
相關次數: | 點閱:142 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討水性紅外線塗料( IWC )對於家用冰箱運轉性能的影響。利用傅立葉紅外線光譜儀( FTIR )檢測紅外線材料的光譜特性並選擇最適合紅外線共振的材料。首先選出二氧化鋯( ZrO2 )、多壁奈米碳管( MWCNTs )以及電氣石( tourmaline )作為添加材料。接著以二階合成法製成不同濃度的IWC,並以FTIR檢測決定最佳的添加濃度為5.0 wt.%。最後將5.0 wt.%的IWC噴塗於壓克力板,並放置於冰箱的層板之上進行IWC對於冰箱性能影響的研究。冰箱性能測試則包含無載下拉實驗與24加載循環實驗的每月耗電量( Wm )、能源因數( EF )、下拉斜率( SPD )、冷凍冷藏庫溫度以及溫度的均勻性。
研究結果顯示冰箱塗佈tourmaline-IWC具有最佳的Wm與EF,其Wm與EF分別比未塗佈IWC減少0.28 ~ 4.19%與提升0.67 ~4.33%。冰箱塗佈IWC在冷凍與冷藏庫的有載庫溫下拉斜率均低於未塗佈IWC。塗佈MWCNTs-IWC的冷凍庫負載下拉斜率高於未塗佈IWC冰箱0.18 ~ 0.55%,然而塗佈IWC的冰箱的冷藏庫負載下拉斜率則均低於未塗佈IWC。冷凍庫溫度均勻性以塗佈ZrO2-IWC最佳,冷藏庫則是以塗佈MWCNTs-IWC最佳。
This study investigated the effect of infrared water-based coating (IWC) for the domestic refrigerator performance. The fourier transform infrared spectroscopy (FTIR) was adopted to detect infrared (IR) spectral characteristics of materials and to select the most suitable materials for infrared resonance. Firstly, the zirconium dioxide (ZrO2), multi-walled carbon nanotubes (MWCNTs), and tourmaline were selected for added materials. Then, the IWC with various materials and concentrations was prepared by using two-step synthesis method, and FTIR detection to determine the optimal concentration was 5.0 wt.%. Finally, the 5.0 wt.%-IWC was sprayed on the acrylic plate, and placed on the refrigerator shelves to investigate the effect of IWC for refrigerator performance. The refrigerator performance test involved no-load pull-down test and 24 hr on-load cycling test for monthly energy consumption (Wm), energy factor (EF), slope of pull-down (SPD), freezer/cold storage temperature, and the temperature uniformity.
The results showed that the refrigerator with tourmaline-IWC had the optimal Wm and EF for all test parameters, the Wm and EF with decreasing 0.28 to 4.19% and increasing 0.67 to 4.33% compared with the refrigerator without IWC, respectively. The slope of pull-down of freezer/cold storage temperature for the refrigerator with IWC was lower than the refrigerator without IWC. The slope of pull-down of load in freezer for the refrigerator with MWCNTs-IWC was 0.18 to 0.55% higher than that of the refrigerator without IWC, however, the slope of pull-down of load in cold storage for the refrigerator with IWC was lower than that the refrigerator without IWC. The optimal uniformity of freezer temperature and cold storage temperature was refrigerator with ZrO2-IWC and MWCNTs-IWC, respectively.
[1] R. C. Duncan, “The peak of world oil production and the road to the Olduvai Gorge,” from http://www.dieoff.org/page224.htm
[2] 能源產業技術白皮書,行政院公共工程委員會,2012。
[3] Y. Udagawa, and H. Nagasawa, “Effects of far-infrared ray on reproduction, growth, behaviour and some physiological parameters in mice,” In Vivo, vol. 14, pp. 321-326, 2000.
[4] Y. Hamada, F. Teraoka, and T. Matsumotob, “Effects of far infrared ray on Hela cells and WI-38 cells,” Int. Congress Ser., vol. 1255, pp. 339-341, 2003.
[5] 李全祿,“遠紅外線輻射材料得研究及應用”,壓電與聲光,17卷,1期,1995。
[6] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles,” Appl. Phys. Lett, vol. 78, no. 6, pp. 718–720, 2001.
[7] H. E. Patel, S. K. Das, T. Sundararagan, A. S. Nair, B. Geoge, and T. Pradeep, “Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects,” Appl. Phys. Lett, vol. 83, no. 14, pp. 2931-2933, 2003.
[8] K. Y. Leong, R. Saidur, S. N. Kazi, and A. H. Mamun, “Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator),” Appl. Therm. Eng, vol. 30, no. 17-18, pp. 2685-2692, 2010.
[9] S. M. Fotukian, and M. N. Esfahany, “Experimental investigation of turbulent convective heat transfer of dilute r-Al2O3/water nanofluid inside a circular tube,” Int. J. Heat Fluid Flow, vol. 31, no. 4, pp. 606–612, 2010.
[10] A. R. Sajadi, and M. H. Kazemi, “Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube,” Int. Commun. Heat Mass Transf, vol. 38, no. 10, pp. 1474-1478, 2011.
[11] S. M. Peyghambarzadeh, S. H. Hashemabadi, M. Naraki, and Y. Vermahmoudi, “Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator,” Appl. Therm. Eng, vol. 52, no. 1, pp. 8-16, 2013.
[12] S. U. S.Choi, Z. G. Zhang, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett, vol. 79, no. 14, pp. 2252–2254, 2001.
[13] T. X. Phuoc, M. Massoudi, and R. H. Chen, “Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan,” Int. J. Therm. Sci, vol. 50, no. 1, pp. 12–18, 2011.
[14] M. Fakoor-Pakdaman, and M. A. Akhavan-Behabadi, P. Razi, “An empirical study on the pressure drop characteristics of nanofluid flow inside helically coiled tubes,” Int. J. Therm. Sci, vol. 65, pp. 206-213, 2013.
[15] L. Liang, D. Zhu, J. Meng, L. Wang, F. Li, Z. Liu, Y. Ding, L. Liu, G. Liang, “Performance and application of far infrared rays emitted from rare earth mineral composite materials, ”J. Nanosci. Nanotechnol, vol. 8, pp. 1203-1210, 2008.
[16] H.L. Lan, Research some questions of high temperature infrared radiant coating during the application (Master's thesis). Wuhan University of Technology, China, 2012.
[17] 李孟達,“遠紅外線材料應用於冰水主機之性能分析”,國立臺北科技大學能源與冷凍空調研究所,碩士論文,2014。
[18] 陸奕中、楊中化,“增進內燃機燃燒效率的複合陶瓷材料及其製備工藝 (Composite ceramic material for increasing combustion efficiency of IC engine and preparation process thereof) ”。中華人民共和國專利編號:CN101045628 A, Publication: Oct. 03. 2007, Granted: Aug. 25. 2010。
[19] 朱雪華,“一種遠紅外光波節能材料及其製品(Far infrared light wave energy-saving material and product)”。中華人民共和國專利編號:CN101245241 A, Publication: Aug. 20. 2008, Granted: Dec. 29. 2010。
[20] X. L. Qin, R. Yang, Y. F. Wang, L. Luo, and S. F. Qiao, “Study of the effect of negative ions on energy efficiency of diesel engines,” Forestry Machinery & Woodworking Equipment, 2013, from http://en.cnki.com.cn/Article_en/CJFDTOTAL-LJMG201303007.htm
[21] R.F. Supcoe, U.S. Patent 4,311,623, January 19, 1982.
[22] T. Hallberg, T. Niinimäki-Heikkilä, E. Hedborg-Karlsson, P. S. Salonen, Christina Nilsson, and Anna Jänis, “ Development of Low-Emissive Camouflage Paint: Final Report,” Scientific report, 2005, FOI-R-1592-SE.
[23] Albert Chin-Tang Wey, Infrared-emitting ceramics for fuel activation. U.S. Patent: US20110186010 A1, Publication: Aug. 04. 2011。
[24] W. Wang, S. Fang, L. Zhang, Z. Mao, “Infrared stealth property study of mesoporous carbon-aluminum doped zinc oxide coated cotton fabrics,” Textile Research Journal 0(00) 1-11.
[25] 李乾文,“遠紅外線塗料用於分離式空調機之節能效益分析”,國立臺北科技大學能源與冷凍空調研究所,碩士論文,2014。
[26] 洪孟賢,“利用遠紅外線鋯粉提升熱交換性能研究”,國立臺北科技大學能源與冷凍空調研究所,碩士論文,2014。
[27] L. Yuan, X. L. Weng, L. J. Deng, “Influence of binder viscosity on the control of infrared emissivity in low emissivity coating,” Infrared Physics & Technology, vol. 56, pp. 25-29, 2013.
[28] J. Y. Zhang, X. Fan, L. Lu, and X. M. Hu, “Plasma sprayed ferrite-based infrared radiation coating directly from transition metal oxides without high-temperature roasting,” Materials Letters, vol. 161, pp. 348-351, 2015.
[29] J. Y. Zhang, X. Fan, L. Lu, X. M. Hu, and G. Q. Li, “Ferrites based infrared radiation coatings with high emissivity and high thermal shock resistance and their application on energy-saving kettle,” Applied Surface Science, vol. 344, pp. 223-229, 2015.
[30] B. George, and P. Mclntyre,紅外線光譜分析法,翁瑞裕,臺北市:高立,2000。
[31] 國家環境毒物研究中心( 2014年1月8日)。游離輻射。取自:http://nehrc.nhri.org.tw/toxic/toxfaq_detail.php?id=128
[32] 鄧敦平、徐有駿、方彥博與王韋評,“氧-乙炔火焰法之奈米碳系流體製造系統開發、特性分析與應用研究”,科技部專題研究成果報告(編號:MOST 103-2221-E-003-021-),2015。
[33] H. T. Zhu, Y. S. Lin, and Y. S. Yin, “A novel one-step chemical method for preparation of copper nanofluids,” Journal of Colloid and Interface Science, vol. 277, pp. 100-103, 2004.
[34] S. A. Kumar, K. S. Meenakshi, B. R. V. Narashimhan, S. Srikanth, and G. Arthanareeswaran, “Synthesis and characterization of copper nanofluid by a novel one-step method,” Materials Chemistry and Physics, vol. 113, pp. 57-62, 2009.
[35] M. S. Liu, M. C. C. Lin, C.Y. Tsai, and C. C. Wang, “Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method,” International Journal of Heat and Mass Transfer, vol. 49, pp. 3028-3033, 2006.
[36] C. H. Lo, T. T. Tsung, L. C. Chen, C. H. Su, and H. M. Lin, “Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS),” Journal of Nanoparticle Research, vol. 7, pp. 313-320, 2005.
[37] C. H. Lo, T. T. Tsung, and H. M. Lin, “Preparation of silver nanofluid by the submerged arc nanoparticle synthesis system (SANSS),” Journal of Alloys and Compounds vol. 434-435, pp. 659-662, 2007.
[38] Y. Hwang, J. K. Lee, J. K. Lee, Y. M. Jeong, S. I. Cheong, Y. C. Ahn, and S. H. Kim, “Production and dispersion stability of nanoparticles in nanofluids,” Powder Technology, vol. 186, pp. 145-153, 2008.
[39] J. A. Eastman, S. U. S. Choi, S. Li, L. J. Thompson, and S. Lee, “Enhanced thermal conductivity through the development of nanofluids,” in Nanophase and Nanocomposite Materials II, edited by S. Komarneni, J. C. Parker, and H. J. Wollenberger, Mater. Res. Soc. Symp. Proc. 457, Warrendale, PA, pp. 9-10, 1997.
[40] S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” J. Heat Transf., vol. 121, pp. 280-289, 1999.
[41] X. Wang, X. Xu, and S. U. S. Choi, “Thermal conductivity of nanoparticle–fluid mixture,” J. Thermophys. Heat Transf, vol. 13, pp. 474-480, 1999.
[42] S. M. S. Murshed, K. C. Leong, and C. Yang, “Enhanced thermal conductivity of TiO2–water based nanofluids,” Int. J. Therm. Sci, vol. 44, pp. 367-373, 2005.
[43] D. Wen, and Y. Ding, “Natural Convective Heat Transfer of Suspensions of Titanium Dioxide Nanoparticles (Nanofluids),” IEEE Trans. Nanotechnol., vol. 5, pp. 220-227, 2006.
[44] X. H. Wei, H. Zhu, T. Kong, and L. Wang, “Synthesis and thermal conductivity of Cu2O nanofluids,” Int. J. Heat Mass Transf, vol. 52, pp. 4371-4374, 2009.
[45] Y. Hwang, J. K. Lee, J. K. Lee, Y. M. Jeong, S. i. Cheong, Y. C. Ahn, and S. H. Kim, “Production and dispersion stability of nanoparticles in nanofluids,” Powder Technol, vol. 186, pp. 145–153, 2008.
[46] 李志林與崔宏媛,“電氣石紅外光譜和紅外輻射特性的研究”,中國地質大學學報,426-432頁,14卷,3期,2008。
[47] CN 101245241 A, “Far infrared light wave energy-saving material and product,” State Intellectual Property Office of The P.R.C, 2008.
[48] US 20110186010 A1, “Infrared-emitting ceramics for fuel activation,” US Patent & Trademark Office, 2011.
[49] US 20120145265 A1, “System for Conditioning Fluids Using Fermi Energy,” US Patent & Trademark Office, 2012.