簡易檢索 / 詳目顯示

研究生: 李懿泓
Li, Yi-Hong
論文名稱: 無機鈣鈦礦電阻式記憶發光二極體光電整合元件之製作與研究
A fabrication of optoelectronic device integration by inorganic perovskite-based RRAM and LEDs
指導教授: 李亞儒
Lee, Ya-Ju
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 54
中文關鍵詞: 鈣鈦礦發光二極體熱注入發光電化學電阻式記憶體常溫合成
英文關鍵詞: Perovskite, hot injection, Light Emitting Diodes(LEDs), Light-emitting electrochemical cell(LEC), Resistive random-access memory(RRAM), Room-Temperature Synthesis
DOI URL: http://doi.org/10.6345/THE.NTNU.EPST.014.2018.E08
論文種類: 學術論文
相關次數: 點閱:300下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文的研究主體:全無機CsPbX3(X = Br,I,Cl )之鈣鈦礦材料於發光二極體之發光層與元件結構之應用。針對無機鈣鈦礦薄膜材料的製程並使其發光。除此之外,使用常溫法合成無機鈣鈦礦,並縮短其製成時間。採用X光繞射儀(XRD)、電子顯微鏡(SEM)、光激發螢光光譜(PL)鑑定鈣鈦礦材料特性,進一步應用至本文多層鈣鈦礦發光元件的結構。
    藉由調控鈣鈦礦陰離子的比例,發出不同波長的光,使用Ocean Optics USB4000光譜儀量測樣品電致發光光的波段,並設計鈣鈦礦電化學發光元件(LEC)與電阻式記憶體(RRAM)的結合。

    In this study,we use hot-injection method and Room-Temperature Synthesis. The characteristics of perovskite materials were identified by X-ray diffraction (XRD), electron microscopy (SEM) and photoluminescence (PL), and further applied to the structure of multilayer perovskite light-emitting diodes. Emites different wavelengths by regulating the proportion of perovskite anions.And Integrated LEC and RRAM.

    摘要 i Abstract ii 致謝 iii 目次 iv 表次 vii 圖次 viii 第一章、序論 1 1-1 量子點材料基本論述 1 1-2 研究動機與目的 2 1-3 文獻回顧 3 第二章、實驗儀器與原理 4 2-1半導體量子點基本論述 4 2-2 鈣鈦礦量子點基本論述 8 2-2-1 鈣鈦礦結構 9 2-2-2 製備CsPbX3量子點的方法 10 2-2-2-1 以高溫熱注入法製備 10 2-2-2-2 以室溫合成法製備 12 2-2-2-3 合成方式─室溫合成法和高溫熱注入法比較 12 2-2-3 鈣鈦礦量子點材料之特性 13 2-2-3-1 CsPbX3型態調控 14 2-2-3-2 CsPbX3陰離子交換特性 14 2-3 CsPbX3 (X = Cl,Br,I)量子點材料光學性質分析 15 2-3-1 CsPbX3 (X = Cl,Br,I)量子點材料光學性質量測 16 2-3-1-1 光致激發螢光原理(PL, Photo Luminescent) 16 2-4 以CsPbX3 (X = Cl,Br,I)製備電致發光元件 18 2-5 射頻磁控濺鍍原理 20 2-6 掃描式電子顯微鏡 23 2-7 有機發光二極體的構造及運作原理 27 第三章、實驗儀器與流程 29 3-1 實驗用品 29 3-2 鈣鈦礦量子點CsPbBr3合成(熱注入法) 30 3-2-1 油酸銫前趨物之配置 30 3-2-2 鈣鈦礦量子點CsPbBr3合成 30 3-2-3 鈣鈦礦量子點純化 31 3-3 CsPbBr3室溫合成法 32 3-3-1 前趨物配置 32 3-3-2 CsPbBr3量子點合成 32 3-4 濺鍍系統 32 3-5 LED樣品製作流程 34 3-5-1 陽極 34 3-5-2 電洞傳輸層 34 3-5-3 發光層 34 3-5-4 電子傳輸層 34 3-5-5 陰極 35 3-6 黑箱量測 37 第四章、實驗結果 39 4-1 CsPbBr3鈣鈦礦量子點晶體結構鑑定 39 4-2 CsPbBr3應用於LED之元件特性與光譜 40 4-3 CsPbBr3應用於LEC元件之I-V特性與光譜 42 4-4 CsPbX3 (X =Cl、Br、I)不同陰離子應用於LEC之特性與光譜 44 4-5 鈣鈦礦應用於LEC與記憶體 45 第五章 結論 49 第六章 參考文獻 50

    1. Y. W. Xiaoming Li, Shengli Zhang, Bo Cai, Yu Gu, Jizhong Song, and Haibo Zeng, Advanced Functional Materials (2016).
    2. Jizhong Song , “Quantum Dot Light-Emitting Diodes Based On Inorganic Perovskite Cesium Lead HalidesFinished ,”
    3. Yan Wang, Ziyu Lv, Qiufan Liao,“Synergies of Electrochemical Metallization and Valance Change in All-Inorganic Perovskite Quantum Dots for Resistive Switching. ”
    4. Junqiang Li,Adv. Mater. 2015, 27, 5196–5202
    5. C. R. M. Kagan, D. B. Dimitrakopoulos, C. D., Science 286, 945-947 (1999).
    6. M. Gratzel, Nature Materials 13, 838-842 (2014).
    7. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Journal of the American Chemical Society 131, 6050 (2009).
    8. J. Werner, C. H. Weng, A. Walter, L. Fesquet, J.P. Shief, S. De Wolf, B. Niesen and C. Ballif, Journal of Physical Chemistry Letters 7, 161-166 (2016).
    9. S. W. Shi, Y. F. Li, X.Y. Li and H. Q. Wang, Materials Horizons 2, 378-405 (2015).
    10. A. S. B. G. Roy, The perovskite structure – A review of its role in ceramic science and technology; Springer International Publishing AG: New York (2000).
    11. G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent and M. V. Kovalenko, Nano Letters 15, 5635-5640 (2015).
    12. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. K’rieg R. Caputo, C. H. Hendon, R. X. Yang, A Walsh and M. V. Kovalnko, Nano Letters 15, 3692-3696- (2015).
    13. Q. A. Akkerman, V D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato and L. Manna, Journal of the American Chemical Society 137, 10276-10281 (2015).
    14. S. Wei, Y. C. Yang, X.J. Kang, L. Wang, L. J. Huang and D. C. Pan, Chemical Communications 52, 7265-7268 (2016).
    15. X. M. Li, Y. Wu, S. L. Zhang, B. Cai, Y. Gu, J. Z. Song and H. B. Zeng, Advanced Functional Materials 26, 2435-2445 (2016).
    16. C. K. W, Moller, H.L. Nature 182 (1958).
    17. M. Nikl, K, Nitsch, K. Polak, E, Mibokova, S. Zazubovich, G. P. Pazzi, P, Fabeni, L. Salvini, R. Aceves, M. BarbosaFlores, R. P. Salas, M. Guroioli and A. Scacco, Journal of Luminescence 72-4, 377-379 (1997).
    18. X. Z. Lan, S. Masala and E. H. Sargent, Nature Materials 13, 233-240 (2014).
    19. D. V. Talapin, J. S. Lee, M. V. Kovalenko and E. V. Shevchenko, Chemical Reviews 110, 389-458 (2010).
    20. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, Nature Photonics 7, 13-23 (2013).
    21. D. M. Trots and S. V. Myagkota, Journal of Physics and Chemistry of Solids 69, 2520-2526 (2008).
    22. C. J. Wang, A. S. R. Chesman and J. J. Jasieniak, Chemical Communications 53, 232-235 (2017).
    23. A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti and J. M. Luther, Science 354, 92-95 (2016).
    24. A. K. Moller, Nature 182, 1436 (1958).
    25. E. Mosconi, C. Quarti, T. Ivanovsaka, G. Ruani and F. De Angelis, Physical Chemistry Chemical Physics 16, 16137-16144 (2014).
    26. Y. H. Chang, C. H. Park and K. Matsuishi, Journal of the Korean Physical Society 44, 889-893 (2004).
    27. D. Weber, Z. Naturforsch 33, 1443-1445 (1978).
    28. H. Chung, S. I Jung, H.J. Kim, W. Cha, E. Sim, D. Kim, W. K. Koh and J. Kim, Angewandte Chemic-International Edition 56, 4160-4164 (2017).
    29. Y. F. S. Hoshino, Physical Review B 9, 4549(1974).
    30. M. Ahmad, G. Rehman, L. Ali, M, Shafiq, R. Ibqal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool and I. Ahmad, Journal of Alloys and Compounds 705, 828-839 (2017).
    31. D. D. Zhang, S. W. Eaton, Y. Yu L. T. Dou and P. D. Yang, Journal of the American Chemical Society 137, 9230-9233 (2015).
    32. Y,.Bekenstein, B. A. Koscher, S. W. Eaton, P. D. Yang and A. P. Alivisatos, Journal of the American Chemical Society 137, 16008-16011 (2015).
    33. J. Z. Song, L. M. Xu, J. H. Li, J. Xue, Y. H. Dong, X. M. Li and H. B. Zeng, Advanced Materials 28, 4861-4869 (2016).
    34. L. Martinez-Sarti, T. M. Koh, M. G. La-Placa, P. P. Boix, M. Sessolo, S. G. Mihaisalkar and H. J. Bolink, Chemical Communications 52, 11351-11354 (2016).
    35. S. B. Sum, D. Yuan, Y. Xu, A. F. Wang and Z. T. Deng, ACS Nano 10, 3648-3657 (2016).
    36. Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Highler, F. Deschler, M. Price, A. Sadhanala, I. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith and R. H. Friend, Nature Nanotechnology 9, 687-692 (2014)
    37. A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury and A. Nag, Angewandte Chemie-International Edition 54, 15424-15428 (2015).
    38. https://cnx.org/resources/2b8da8e222954317cb6a8c2af9ecc7f2f899dab0/Object%2013c.jpg
    39. Bernard Valeur, Maro Nuno Berberan-Sants,“Molecular Fluorescence: Principles and Applications”
    40. O. A. Jaramillo-Quintero, R. S. Sanchez, M. Rincon and I. Mora-Sero, Journal of Physical Chemistry Letters 6, 1883-1890 (2015).
    41. J. Z. Song, J. H. Li, X. M. Li, L. M. Xu, Y. H. Dong and H. B. Zeng, Advanced Materials 27, 7162 (2015).
    42. X. Y.Zhang, H. Lin, H. Huang, C. Reckmerier, Y. Zhang, W. C. H. Chou, and A. L. Rogach, Nano Letters 17, 598-598 (2017).
    43. Y. H. Kim, H. Cho, J. H. Heo, T. S. Kim, N. Myoung, C. I. Lee, S. H. Jin, and T. W. Lee, Advanced Materials 27, 1248-1254 (2015)
    44. G. R. Li, Z. K. Tan, D. W. Di, M. I. Lai, L. Jiang, J. H. W. Lim, R. H. Friend and N. C. Gretham, Nano Letters 15, 2640-2644 (2015).
    45. F. Hau, c. C. Shoumpos, D. H. Cao, R. P. H. Chung and M. G. Katerizidit, Nature Physics 8, 489-494 (2014).
    46. Rigaku Mechatronics Co. /Applications/Sputtering systems, 2011/07/09.

    無法下載圖示 本全文未授權公開
    QR CODE