研究生: |
李懿泓 Li, Yi-Hong |
---|---|
論文名稱: |
無機鈣鈦礦電阻式記憶發光二極體光電整合元件之製作與研究 A fabrication of optoelectronic device integration by inorganic perovskite-based RRAM and LEDs |
指導教授: |
李亞儒
Lee, Ya-Ju |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 鈣鈦礦 、發光二極體 、熱注入 、發光電化學 、電阻式記憶體 、常溫合成 |
英文關鍵詞: | Perovskite, hot injection, Light Emitting Diodes(LEDs), Light-emitting electrochemical cell(LEC), Resistive random-access memory(RRAM), Room-Temperature Synthesis |
DOI URL: | http://doi.org/10.6345/THE.NTNU.EPST.014.2018.E08 |
論文種類: | 學術論文 |
相關次數: | 點閱:194 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文的研究主體:全無機CsPbX3(X = Br,I,Cl )之鈣鈦礦材料於發光二極體之發光層與元件結構之應用。針對無機鈣鈦礦薄膜材料的製程並使其發光。除此之外,使用常溫法合成無機鈣鈦礦,並縮短其製成時間。採用X光繞射儀(XRD)、電子顯微鏡(SEM)、光激發螢光光譜(PL)鑑定鈣鈦礦材料特性,進一步應用至本文多層鈣鈦礦發光元件的結構。
藉由調控鈣鈦礦陰離子的比例,發出不同波長的光,使用Ocean Optics USB4000光譜儀量測樣品電致發光光的波段,並設計鈣鈦礦電化學發光元件(LEC)與電阻式記憶體(RRAM)的結合。
In this study,we use hot-injection method and Room-Temperature Synthesis. The characteristics of perovskite materials were identified by X-ray diffraction (XRD), electron microscopy (SEM) and photoluminescence (PL), and further applied to the structure of multilayer perovskite light-emitting diodes. Emites different wavelengths by regulating the proportion of perovskite anions.And Integrated LEC and RRAM.
1. Y. W. Xiaoming Li, Shengli Zhang, Bo Cai, Yu Gu, Jizhong Song, and Haibo Zeng, Advanced Functional Materials (2016).
2. Jizhong Song , “Quantum Dot Light-Emitting Diodes Based On Inorganic Perovskite Cesium Lead HalidesFinished ,”
3. Yan Wang, Ziyu Lv, Qiufan Liao,“Synergies of Electrochemical Metallization and Valance Change in All-Inorganic Perovskite Quantum Dots for Resistive Switching. ”
4. Junqiang Li,Adv. Mater. 2015, 27, 5196–5202
5. C. R. M. Kagan, D. B. Dimitrakopoulos, C. D., Science 286, 945-947 (1999).
6. M. Gratzel, Nature Materials 13, 838-842 (2014).
7. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Journal of the American Chemical Society 131, 6050 (2009).
8. J. Werner, C. H. Weng, A. Walter, L. Fesquet, J.P. Shief, S. De Wolf, B. Niesen and C. Ballif, Journal of Physical Chemistry Letters 7, 161-166 (2016).
9. S. W. Shi, Y. F. Li, X.Y. Li and H. Q. Wang, Materials Horizons 2, 378-405 (2015).
10. A. S. B. G. Roy, The perovskite structure – A review of its role in ceramic science and technology; Springer International Publishing AG: New York (2000).
11. G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent and M. V. Kovalenko, Nano Letters 15, 5635-5640 (2015).
12. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. K’rieg R. Caputo, C. H. Hendon, R. X. Yang, A Walsh and M. V. Kovalnko, Nano Letters 15, 3692-3696- (2015).
13. Q. A. Akkerman, V D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato and L. Manna, Journal of the American Chemical Society 137, 10276-10281 (2015).
14. S. Wei, Y. C. Yang, X.J. Kang, L. Wang, L. J. Huang and D. C. Pan, Chemical Communications 52, 7265-7268 (2016).
15. X. M. Li, Y. Wu, S. L. Zhang, B. Cai, Y. Gu, J. Z. Song and H. B. Zeng, Advanced Functional Materials 26, 2435-2445 (2016).
16. C. K. W, Moller, H.L. Nature 182 (1958).
17. M. Nikl, K, Nitsch, K. Polak, E, Mibokova, S. Zazubovich, G. P. Pazzi, P, Fabeni, L. Salvini, R. Aceves, M. BarbosaFlores, R. P. Salas, M. Guroioli and A. Scacco, Journal of Luminescence 72-4, 377-379 (1997).
18. X. Z. Lan, S. Masala and E. H. Sargent, Nature Materials 13, 233-240 (2014).
19. D. V. Talapin, J. S. Lee, M. V. Kovalenko and E. V. Shevchenko, Chemical Reviews 110, 389-458 (2010).
20. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, Nature Photonics 7, 13-23 (2013).
21. D. M. Trots and S. V. Myagkota, Journal of Physics and Chemistry of Solids 69, 2520-2526 (2008).
22. C. J. Wang, A. S. R. Chesman and J. J. Jasieniak, Chemical Communications 53, 232-235 (2017).
23. A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti and J. M. Luther, Science 354, 92-95 (2016).
24. A. K. Moller, Nature 182, 1436 (1958).
25. E. Mosconi, C. Quarti, T. Ivanovsaka, G. Ruani and F. De Angelis, Physical Chemistry Chemical Physics 16, 16137-16144 (2014).
26. Y. H. Chang, C. H. Park and K. Matsuishi, Journal of the Korean Physical Society 44, 889-893 (2004).
27. D. Weber, Z. Naturforsch 33, 1443-1445 (1978).
28. H. Chung, S. I Jung, H.J. Kim, W. Cha, E. Sim, D. Kim, W. K. Koh and J. Kim, Angewandte Chemic-International Edition 56, 4160-4164 (2017).
29. Y. F. S. Hoshino, Physical Review B 9, 4549(1974).
30. M. Ahmad, G. Rehman, L. Ali, M, Shafiq, R. Ibqal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool and I. Ahmad, Journal of Alloys and Compounds 705, 828-839 (2017).
31. D. D. Zhang, S. W. Eaton, Y. Yu L. T. Dou and P. D. Yang, Journal of the American Chemical Society 137, 9230-9233 (2015).
32. Y,.Bekenstein, B. A. Koscher, S. W. Eaton, P. D. Yang and A. P. Alivisatos, Journal of the American Chemical Society 137, 16008-16011 (2015).
33. J. Z. Song, L. M. Xu, J. H. Li, J. Xue, Y. H. Dong, X. M. Li and H. B. Zeng, Advanced Materials 28, 4861-4869 (2016).
34. L. Martinez-Sarti, T. M. Koh, M. G. La-Placa, P. P. Boix, M. Sessolo, S. G. Mihaisalkar and H. J. Bolink, Chemical Communications 52, 11351-11354 (2016).
35. S. B. Sum, D. Yuan, Y. Xu, A. F. Wang and Z. T. Deng, ACS Nano 10, 3648-3657 (2016).
36. Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Highler, F. Deschler, M. Price, A. Sadhanala, I. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith and R. H. Friend, Nature Nanotechnology 9, 687-692 (2014)
37. A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury and A. Nag, Angewandte Chemie-International Edition 54, 15424-15428 (2015).
38. https://cnx.org/resources/2b8da8e222954317cb6a8c2af9ecc7f2f899dab0/Object%2013c.jpg
39. Bernard Valeur, Maro Nuno Berberan-Sants,“Molecular Fluorescence: Principles and Applications”
40. O. A. Jaramillo-Quintero, R. S. Sanchez, M. Rincon and I. Mora-Sero, Journal of Physical Chemistry Letters 6, 1883-1890 (2015).
41. J. Z. Song, J. H. Li, X. M. Li, L. M. Xu, Y. H. Dong and H. B. Zeng, Advanced Materials 27, 7162 (2015).
42. X. Y.Zhang, H. Lin, H. Huang, C. Reckmerier, Y. Zhang, W. C. H. Chou, and A. L. Rogach, Nano Letters 17, 598-598 (2017).
43. Y. H. Kim, H. Cho, J. H. Heo, T. S. Kim, N. Myoung, C. I. Lee, S. H. Jin, and T. W. Lee, Advanced Materials 27, 1248-1254 (2015)
44. G. R. Li, Z. K. Tan, D. W. Di, M. I. Lai, L. Jiang, J. H. W. Lim, R. H. Friend and N. C. Gretham, Nano Letters 15, 2640-2644 (2015).
45. F. Hau, c. C. Shoumpos, D. H. Cao, R. P. H. Chung and M. G. Katerizidit, Nature Physics 8, 489-494 (2014).
46. Rigaku Mechatronics Co. /Applications/Sputtering systems, 2011/07/09.